
Manual i-ADHoRe 3.0

Department of Plant Systems Biology
VIB - Ghent University

Contact: Yves Van de Peer1

Internet Based Communication Networks and Servives (IBCN)
Department of Information Technology (INTEC)

Ghent University
Contact: Jan Fostier2

March 6, 2012

1yves.vandepeer@psb.vib-ugent.be
2jan.fostier@intec.ugent.be

Contents

1 Package contents 3

2 Installation and requirements 4
2.1 Basic Installation on Linux . 4
2.2 Installing CMake . 4

3 Using i-ADHoRe 5
3.1 Usage . 5
3.2 Configuration file . 5

3.2.1 genome lists . 5
3.2.2 BLAST-table . 6
3.2.3 Running mode . 6
3.2.4 Algorithm parameter settings - general 7
3.2.5 Algorithm parameter settings - Colinear Mode 8
3.2.6 Alignment algorithm . 8
3.2.7 Algorithm parameter settings - Cloud Mode 9
3.2.8 Output path . 10

3.3 Parallellization . 10
3.4 Visualization . 10
3.5 Output . 11

3.5.1 The multiplicons table . 12
3.5.2 The baseclusters table. 13
3.5.3 The anchorpoints table. 13
3.5.4 The segments table. 14
3.5.5 The genes table. 14
3.5.6 The list elements table. 15
3.5.7 The clouds table . 15
3.5.8 The cloud anchorpoint table . 16

4 Post processing: i-Visualize 16
4.1 Example of AlignmentMultiplion.svg . 16
4.2 Examples of GHM.png . 16

1

References

Jan Fostier*, Sebastian Proost*, Bart Dhoedt, Yvan Saeys, Piet De-
meester, Yves Van de Peer and Klaas Vandepoele (2011) (* contributed
equally)
A Greedy, Graph-Based Algorithm for the Alignment of Multiple Homologous Gene
Lists. Bioinformatics 27, 749-756.

Sebastian Proost*, Jan Fostier*, Dieter De Witte, Bart Dhoedt, Piet De-
meester, Yves Van de Peer and Klaas Vandepoele (2012) (* contributed
equally)
i-ADHoRe 3.0 Accurate and Sensitive Detection of Genomic Homology in Extremely
Large Datasets. Nucleic Acids Res 40(2), e11.

Previous work:

Simillion, C., Janssens, K., Sterck, L., Van de Peer, Y. (2008)
i-ADHoRe 2.0: An improved tool to detect degenerated genomic homology using
genomic profiles. Bioinformatics 24, 127-128.

Simillion, C., Vandepoele, K., Saeys, Y., Van de Peer, Y. (2004)
Building Genomic Profiles for Uncovering Segmental Homology in the Twilight Zone.
Genome Res. 14, 1095-1106.

Vandepoele, K., Saeys, Y., Simillion, C., Raes, J., Van de Peer, Y. (2002)
The Automatic Detection of Homologous Regions (ADHoRe) and its application to
microcolinearity between Arabidopsis and Rice. Genome Res. 12, 1792-801.

2

1 Package contents

The i-ADHoRe package consists of the following files and directories:

• manual.pdf The documentation file (this file)

• Makefile The makefile needed to compile the source code

• src/ The location of the main C++ source code files

• src/alignment/ The location of the source code files for the alignment of profiles
(consists of 2 methods).

• src/datastructures/ The location of the source code files for the necessary datas-
tructures.

• src/debug/ The location of the source code files that were mainly used for debugging
purposes.

• test_set The location where the files are that are necessary to do the test-run.

• DatasetI.ini Dataset I consists of the Arabidopsis thaliana genome. This testset
should have an approximate running time of 1 minute.

• DataSetII.ini Dataset II consists of the Arabidopsis thaliana, Vitis vinifera and
Populus trichocarpa genomes. This testset may run for several hours.

3

2 Installation and requirements

2.1 Basic Installation on Linux

This package requires CMake to build the software. If you don’t have CMake already
installed, refer to the next section ”Installing CMake”.
The installation of i-ADHoRe is simple. First, unzip the i-adhore-xxx.tar.gz file (where xxx
denotes the version number):

tar -xzvf i-adhore-xxx.tar.gz

cd i-adhore-xxx

From this directory, run the following commands:

mkdir build

cd build

cmake ..

A useful option to specify for the cmake command is CMAKE INSTALL PREFIX so that
you can tell cmake where to install the software.
For example, to install in your local $(HOME)/i-adhore directory you would run:

cmake .. -DCMAKE_INSTALL_PREFIX=$(HOME)/i-adhore

Afterwards run:

make

And to install run (as root if necessary):

make install

It is required that you have a Pthreads library installed. Support for MPI and Googletest
unit testing framework is optional.

2.2 Installing CMake

As root, execute the following commands:

• on Redhat / Fedora distributions:

yum install cmake

• on Ubuntu / Debian distributions:

aptitude install cmake

4

3 Using i-ADHoRe

3.1 Usage

The command-line reads:

> i-adhore CONFIGURATIONFILE

Where CONFIGURATIONFILE is a file containing a list of all files in the dataset as well
as all input options and parameters. After reading the settings file and checking if all the
necessary options are specified, i-ADHoRe starts detecting colinearity in the dataset. See
the DatasetI.ini or DataSetII.ini file, which are included in the i-ADHoRe package, for an
example. The configuration file is explained in 3.2.

3.2 Configuration file

3.2.1 genome lists

These are all the genomes that are to be analysed. You can have different fragments (e.g.
chromosomes, BACs, contigs,...) per genome, here further referred to as gene lists. They
are represented as individual gene list files containing unique gene identifiers, one per line.
These identifiers cannot contain spaces and must end by a ‘+’ or ‘-’ sign, indicating the
strand orientation of each gene. Thus, a typical gene list file looks like:

gene1+

gene2-

gene3+

gene4+

gene5-

...

These list files are listed per genome in the settings file in the following way:

genome=some_genome

C01 some_path/first_chrom.lst

C02 some_path/second_chrom.lst

C03 some_path/third_chrom.lst

genome=some_other_genome

C01 another_path/this_chrom.lst

C02 another_path/that_chrom.lst

...

You can include as many genomes and lists as you want. Every genome must start
with the keyword ‘genome=’, followed by an unique genome identifier (no spaces). Next,
all the fragments of the genome are listed (one per line) as a unique identifier (unique per
genome) followed by a space and the path to the corresponding list file. The list of genome
fragments is terminated with a blank line.

5

3.2.2 BLAST-table

This must be a file containing all gene pairs of the dataset that i-ADHoRe should consider
to be homologs. Typically, these are the query and hit pairs from an all-against-all BLAST
search on which some selective criteria were applied to filter out non-significant hits, e.g. an
e-value cutoff or a more advanced filtering method. These gene pairs should be listed with
the same identifiers as used in the gene list files and are separated with a TAB. Note that
homology is a symmetrical relationship, thus if the table contains the pair A,B, i-ADHoRe
also creates the pair B,A. This can be important if the query-hit pairs are selected by
putting an e-value cutoff, since the e-value is not a symmetrical score (BLASTing sequence
A against B gives a different result as B against A). A BLAST-table file looks thus like
this:

gene1 gene2

gene3 gene5

gene6 gene4

...

The path to the BLAST-table file is indicated in the settings file as:

blast_table=some_path/blast_table.txt

For genes clustered into families a different type of table can be used. This setting
requires much less memory. So if many genomes are compared in a single run this might
be necessary to keep the memory usage within the boundaries of the available hardware.
Each gene needs to be in a family even if it’s a singleton. To use this option build your
BLAST-table like this:

gene1 family1

gene2 family1

gene3 family1

gene4 family2

...

To indicate you’re using this type of table add the following parameter to the settings
file.

table_type=family

3.2.3 Running mode

The algorithm can run in three different modes:

Colinear Mode This is the default mode. It searches for regions of colinearity in the dot
matrices between genelists. To add the request for this mode explicitely add the following
line to the ini file:

cluster_type=colinear

6

Cloud Mode This method looks for regions where gene content is similar but gene order
is not necessarily conserved in the two genelists. In the dot matrix this phenomenon will
appear as cloud like structures. The distance function used in Cloud mode is the Chebyshev
distance. Note that the Cloud mode doesn’t perform profile searches . To run the algorithm
in Cloud mode add the following line to the ini file:

cluster_type=cloud

Hybrid Mode To investigate datasets containing a mix of recent and diverged collinear
regions the user can choose for the Hybrid mode. In the dot matrices the algorithm first
runs in Colinear mode. Then the dots contained in the collinear regions are removed after
which the Cloud mode is started. Note that no profile searches are performed in collinear
mode! To run the algorithm in Hybrid mode add the following line to the ini file:

cluster_type=hybrid

3.2.4 Algorithm parameter settings - general

The optimal parameter settings are dependent on the properties of the dataset. An overview
is provided in Proost et al. 2011.

Tandem gap size Indicates the maximum Euclidean distance (or diagonal pseudo dis-
tance) that can exist between gene pairs to be considered tandem duplicates. This setting
is optional, the program will use the default value ‘gap_size=’ / 2 if this parameter isn’t
set. Indicate this value using the identifier ‘tandem_gap=’, e.g.

tandem_gap=10

The probability cutoff A real value between 0 and 1, indicating the maximum prob-
ability to be generated by chance a cluster or synthenic cloud can have. Suggested value:
0.001 Indicate this value using the identifier ‘prob_cutoff=’, e.g.

prob_cutoff=0.001 to 0.01

Write Statistics When this parameter is set to true supplemantary statistics are pro-
vided which report the percentages of chromosomes that are inside duplicated or collinear
regions.

write_stats=true/false

Note that this doesn’t work correct in combination with flush_output. (see further) In
case this variable is set to true the flush_output value should exceed the maximum number
of multiplicons in the system.

Limit to level 2 dectection Optionally, the user can force i-ADHoRe to detect only
level 2 multiplicons (i.e. multiplicons containing only 2 segments) and not to build profiles.
In this case, the program will only perform the basic ADHoRe homology detection. This
option is disactived by default. To activate this option, put this line in the settings file:

level_2_only=true

7

Multiple hypothesis correction If the same experiment is repeated a number of times
the probability to observe rare events increases. To take this into account when the validity
of collinear regions or synthenic clouds is evaluated a Multiple Hypothesis Correction is
used. The user can choose to not use this, use the Bonferroni method or the False Discovery
Rate (FDR) method. This can be done by adding one of the following lines to the ini file
(if not added no correction is provided). Suggested value: FDR.

multiple_hypothesis_correction=bonferroni, FDR or none

3.2.5 Algorithm parameter settings - Colinear Mode

The gap size Indicates the maximum (pseudo-)distance that should exist between points
in a cluster. Suggested value: 10-40. Indicate this value using the identifier ‘gap_size=’,
e.g.

gap_size=15

Cluster gap size Indicates the maximum (pseudo-)distance that should exist between
individual base clusters in a cluster. When i-ADHoRe detects homologous segments, it
does so by first detecting base clusters of anchor points in a gene homology matrix. Next,
it is checked if several base clusters are located close enough to each other to be grouped
into one metacluster. This value should be bigger or equal than the gap size. If unsure, set
this to be the same as the gap size. Indicate this value using the identifier ‘cluster_gap=’,
e.g.

cluster_gap=20

The Q-value A real value between 0 and 1, indicating the minimum r2-value (a measure
for the linearity of a series of points) a cluster should have. Suggested value: 0.70-0.90
Indicate this value using the identifier ‘q_value=’, e.g.

q_value=0.9

Minimum number of anchor points A whole number indicating the minimum number
of anchor points i.e. the number of genes each segment in a multiplicon should have that
are homologous to the other segments in that multiplicon. Suggested value: 3-6. Indicate
this value using the identifier ‘anchor_points=’, e.g.

anchor_points=5

3.2.6 Alignment algorithm

The user can also choose from 3 alignment algorithms. The progressive Needleman-Wunsch
algorithm and the Greedy Graph-based Alignment algorithm. (described in J. Fostier et
al. 2011) The latter is called gg2, gg is the original aligner from i-ADHoRe 2.0. The nw
aligner is chosen by default. Suggested setting: gg2.

alignment_method=nw, gg, gg2

8

Maximum number of gaps in alignment This is the number of gaps allowed in a
segment after aligning it in a multiplicon. This value is always larger than or equal to the
cluster_gap. Suggested setting: 15-20. Note that this parameter is not influencing the
profile search operation.

max_gaps_in_alignment=20

3.2.7 Algorithm parameter settings - Cloud Mode

Cloud gap size This is in principle the maximum chebyshev distance between two dots
in a cloud. The chebyshev distances considers all dots on the edge of a square to be equally
distant from the center of mass of the square. In bruteForceSynthenyMode the actual
chebyshev distance is calculated between dots. In the default case dots are added from the
frame around the clouds bounding box, which speeds up the algorithm. The thickness of
this frame is in this case the cloud gap. Suggested setting: 10-20

cloud_gap_size=20

Cloud cluster gap size This is the same as the cluster_gap. In case of cloud merging
the algorithm guarantees that the two closest points between two clouds are actually closer
than this distance removed from each other. Suggested setting: Cloud gap size +5.

cloud_cluster_gap=25

Cloud filter method To evaluate whether a cloud is generated by chance a statistical
method is used. In Cloud mode there can be chosen between 3 filters. One filters according
to the number of dots divided by the longest side of the bounding box (density filter). The
more relevant filters use the binomial distribution and the binomial distribution corrected
for tandem duplicates. (only one dot per row and per column assumed)

cloud_filter_method=density, binomial, binomal_corr

If no filtermethod is specified in the ini file, the binomial distribution is chosen by default.

bruteForceSynthenyMode When values for the gapsizes are to big (depends on density
of the dots in the GHM) there was an avalanche effect spotted. This means that large
synthenic clouds are created which keep on merging until eventually only one vaste cloud
remains. This effect is due to the fact that the gapsize is used to add new dots within a
frame whereby the thickness is equal to the gapsize. This heuristic makes the algorithm
faster but it also allows for dots to be added which are in fact not within the gapsize.
Gapsizes can be tuned to overcome this effect. Another parameter is included in the input
files to study this effect. With this bruteforce method always the actual distance to from
a point to a cloud is used and therefore all dots are within the gapsize of another dot.

bruteForceSynthenyMode=on,off

If not specified in the ini file, the mode is off by default.

9

3.2.8 Output path

This is the directory to which the output files are written. If the directory does not exist,
one will be created. The contents of the different output files will be described in full detail
in the next section. The output path is declared like:

output_path=mydata/i-adhore_out

3.3 Parallellization

There is one parameter related to multithreading:

number_of_threads=4

The algorithm also supports MPI parallelization. It automatically detects whether the
system has MPI support. The number of processes can be specified from the command
line:

> mpirun -np nProcs i-adhore CONFIGURATIONFILE

Hereby nProcs must be substituded with the number of processes, this can be any positive
integer number.
The parallelization divides the searches in an intelligent way among the processes and
threads. The alignment itself has not been parallelized.

3.4 Visualization

One of the new features of i-ADHoRe 3.0 is that it doesn’t require post processing to
visualize some of its structures. Two visualization methods have been added. One to
visualize the dot matrices and one to visualize the aligned multiplicons.

Visualize Gene Homology Matrix This creates a set of files (for every pair of genelists!)
of the form COLGHM_genelistx_genelisty or SYNTHGHM_genelistx_genelisty depend-
ing on the fact that it is a matrix from Colinear or Cloud mode. Depending on whether
the user has png support (library: libpng) the files will have a .png extension, otherwise
they will be written in bmp format.
Dots are drawn in white. If they are part of a significant BaseCluster or Synthenic Cloud
they are drawn in yellow. The bounding box of the cluster or cloud is also drawn. For sig-
nificant clusters it is drawn in green, for the others in red. In Colinear mode the confidence
intervals of the BaseClusters is also added by means of blue dots. To turn on dot matrix
visualization add the following line to the ini file:

visualizeGHM=true/false

This variable is set to false by default. An example of a GHM plot is found in the chapter
about postprocessing.

VisGPairs This parameter allows for specific genelist pairs to be visualized (dot matrix).
Note that visualizeGHM=false otherwise this parameter will have no effect.

visGPairs=listname1a genome1a listname1b genome1b, listname2a ...

10

Visualize Alignment This creates a set of AlignmentMultipliconID.svg files (for all
multiplicons!) containing the visualization of the aligned multiplicons. Hereby ID will be
substituted with the multiplicon’s identifier. When the multiplicon has been rejected this
produces a file with only black boxes. Since visualizing all multiplicons might be impossible
for large datasets a postprocessor tool is added to the i-ADHoRe package to visualize one
multiplicon per turn. The file is a set of rows of coloured boxes. Every row represents
a BaseCluster or Segment which has been aligned into the Profile. There are 3 distinct
posibilities concerning the boxes.

• White boxes: represent gaps.

• Black boxes: represent genes which have no homologous links with other genes in the
profile.

• Coloured boxes: reprensent genes which have a homologous link in the profile (or
tandems which are seperated more than the tandem gap size!)

Further on there are lines which link nonaligned genes. If a gene is not aligned (boxes below
have different color) and there is no line connecting it to its homologue than this is a gene
has a homologue in the same row (segment) and is thus a tandem. To turn on alignment
visualization add the following line to the ini file:

visualizeAlignment=true/false

This variable is set to false by default.

3.5 Output

Verbose If this parameter is set to true the input parameters are printed to the screen,
also the ones implicitely set by the program.

verbose_output=false

Flush output The value of this parameter (default value is 1000) defines when the vector
of evaluated multiplicons is written to the outputstream. At the moment 1000 multiplicons
are in the vector their properties are written to the output tables described later on. As
mentioned earlier, this doesn’t work toghether with write_stats!

flush_output=1000

Output tables i-ADHoRe outputs different tables with data as TAB delimited text files
to the output directory specified in the settings file. These tables describe the different
elements of the multiplicons and clouds that were detected. All of these elements are iden-
tified by an unique code to facilitate store of the data in a relational database management
system like MySQL or Oracle. In each file, the first line describes the field names.
Below is a description of all the fields of all tables. Note that, for the sake of clarity, the
order of the fields described here may be different from the order of the columns in the
files.

11

3.5.1 The multiplicons table

Describes all multiplicons for every multiplication level that was detected. This table is
written in the output directory specified in the settings file as multiplicons.txt, with
the first row indicating the field names. The meaning of the different fields is explained
below. Note that this table also lists all level 2 multiplicons that are redundant, meaning
that the segments of these multiplicons are included in higher-level multiplicons. These
multiplicons are marked as redundant using the is redundant field (see below).

id An unique identifier for each multiplicon.

genome x, list x For level 2 multiplicons (i.e. containing only 2 segments), these fields
describe the first segment (denoted as the x-segment) of a multiplicon. This segment
is identified by the genome it is part of (genome x) and the specific gene list (list x)
it is located on.

For multiplicons of level 3 and more, these fields are left blank since for these multipli-
cons, the collinearity is detected between a profile of the parent multiplicon (indicated
in the parent field) and the y segment. Thus for multiplicons with a level of more
than 2, the parent multiplicon replaces the x-segment.

parent For multiplicons of level 3 and more, indicates the multiplicon that was used as a
profile to detect this multiplicon. The value refers to the id field of that multiplicon,
which is always a multiplicon of level n− 1 where n is the level of the current multi-
plicon. This field is left blank for level 2 multiplicons. Since a multiplicon must either
have a parent object or an x-segment, both are jointly referred to as the x-object of
the multiplicon.

genome y, list y For level 2 multiplicons (i.e. containing only 2 segments), these fields
describe the second segment (denoted as the y-segment) of a multiplicon. This seg-
ment is again identified by the genome it is part of (genome y), the gene list (list y)
it is located on.

For multiplicons of level 3 and more, it describes the segment that was last added
to the multiplicon using the parent multiplicon (indicated in the parent field) as a
profile to detect it.

level Indicates the total number of segments in the multiplicon.

number of anchorpoints The number of anchor points (= homologous genes) on the
segment last added to a multiplicon, i.e. the y-segment. For level 2 multiplicons, this
is the number of homologous gene pairs between segment x and segment y.

profile length The length of the aligned multiplicon.

begin x, end x Begin and end coordinates on the x-object.

begin y, end y Begin and end coordinates on the y-segment.

is redundant Set to true (value −1) or false (value 0). If set to true, this means that a
multiplicon is redundant (see above).

12

3.5.2 The baseclusters table.

This table is mainly for development purposes. When i-ADHoRe detects homologous seg-
ments, it does so by first detecting base clusters of anchor points in a gene homology matrix
(GHM, see Simillion et al., 2004 for details). These base clusters are first statistically vali-
dated and then it is checked if several base clusters are located close enough to each other to
be grouped into one metacluster. If a base cluster can not be joined together with another
one, a metacluster of a single base cluster is generated. Each metacluster corresponds to a
multiplicon in the multiplicons table. Thus, for each multiplicon there will be one or more
base clusters. This table is written to the file baseclusters.txt.

id An unique identifier for each base cluster.

multiplicon Corresponds to the id field of the multiplicons table. Multiple base clusters
can be part of one metacluster/multiplicon.

number of anchorpoints The number of anchor points (= homologous genes) on the
y-segment of the current base cluster.

orientation Indicates if the y segment of the current base cluster has the same (value ‘+’)
or opposite (value ‘-’) 5’-3’ orientation with respect to the x-segment for level 2 or
with respect to the parent multiplicon/profile for higher level multiplicons.

was twisted Set to true (value −1) or false (value 0). If true, this means that the order
of the genes of the y-segment of the current base cluster was reversed before being
joined into a metacluster.

cluster probability A real value indicating the probability that the specified base cluster
was generated by chance rather than being generated by true homology. See Simillion
et al., 2004 for details of the statistical validation.

3.5.3 The anchorpoints table.

This table describes for each multiplicon all pairs of homologous genes between two seg-
ments in the case of level 2 multiplicons or between the parent multiplicon and the segment
last added to the multiplicon. This table is written into a file called anchorpoints.txt.

id An unique identifier for each anchor point.

multiplicon Refers to the id field in the multiplicons table. Indicates the multiplicon the
anchorpoint is part of.

basecluster Refers to the id field in the base clusters table. Indicates the base cluster the
anchor point is part of.

orientation Indicates if both genes involved have the same (value ‘+’) or opposite (value
‘-’) transcriptional orientations.

gene x The gene on the x-axis in the GHM.

gene y The gene on the y-axis in the GHM.

coord x The position of gene_x in the x object of the multiplicon.

13

coord y The position of gene_y in the y list of the multiplicon.

real anchor Set to true (value −1) or false (value 0). If true, it means that this anchor
point is counted in the number of anchorpoints fields in the multiplicons or base
clusters table. If false, it is not counted. This occurs when several homologous genes
that are aligned on the same position in a profile. If this position shows up as an
anchor point on a GHM, it will be counted only once, although each of the genes
of that position form a valid homologous pair with the corresponding gene on the
y-segment. Again, mainly for development purposes.

3.5.4 The segments table.

Lists all the segments of every multiplicon. This table is written to segments.txt.

id Primary key. Use the index numbers of the datastructure in iADHoRe::record_structure.

multiplicon The multiplicon the segment belongs to.

genome The genome the segment belongs to.

list The gene list the segment belongs to.

first The first gene (i.e. with the lowest coordinate) of the gene list the segment is part
of. This is not always the first gene of the segment, since the order of genes in a
multiplicon segment is not always the same as the order on the original gene list.
This is because during the profile alignment procedure, the order of genes of the
segment or part of it is sometimes reversed.

last The last gene (i.e. with the highest coordinate) of the gene list the segment is part
of. Analogous to the first field.

order The order in which the segment was added to the multiplicon. E.g. for a level 5
multiplicon, the first segment has order 0 and the last one added has 4.

3.5.5 The genes table.

Lists the position of all genes in all gene lists specified in the settings file. Also tells which
genes are marked as tandem repeats. The table is stored in the file genes.txt.

id An unique identifier for each gene. The same identifier is used as in the gene list files.
Therefore, make sure no two genes, even not in different files, have the same identifier.

genome The genome the gene is located in.

list The gene list of the gene.

coordinate The position of the gene in its gene list.

orientation The transcriptional orientation of the gene, ‘+’ or ‘-’.

remapped coordinate The coordinate of the gene in the remapped gene list (i.e. the
gene list from which tandem genes have been removed).

14

is tandem Set to true (value −1) or false (value 0). If true, indicates that this gene is
part of a tandem array of genes. In i-ADHoRe, a gene is considered a tandem repeat
if it is within tg positions of a homolog on the same gene list. If specified in the
settings file tg is the tandem_gap parameter and is otherwise g

2 where g is the gap
size as specified in the settings file.

is tandem representative Set to true (value −1) or false (value 0). In i-ADHoRe all
genes that are part of a tandem array are mapped onto the first gene. Thus, this
first gene then ‘represents’ all its siblings in the array. If this field is set to true, the
current gene is such a representative.

tandem representative Refers to the id field of this table. Indicates for tandem gene,
that gene that functions as its representative (see above).

remapped True if a gene has been remapped, i.e. if it has been removed from the remapped
gene list.

3.5.6 The list elements table.

Lists all positions of genes in multiplicon segments. Again, be aware that the order and
orientation of the genes in multiplicon segments is not always the same as that on the
original gene list. Also note that the positions of genes in multiplicon segments will not
always be consecutive because of gap positions. The table is stored in the file list_

elements.txt.

id An unique identifier for each element.

segment The segment this element belongs to.

gene The gene occurring on the specific position of the segment. Refers to the id field of
the genes table.

position The position of the gene in the segment.

orientation The orientation of the gene in the segment.

3.5.7 The clouds table

This table lists all synthenic clouds found in the search which have passed the statistical
test (filter). (file is not generated in collinear mode)

id A unique identifier for each synthenic cloud.

genome The genome associated with the cloud (x and y).

list The genelist of the cloud (x and y).

number of anchorpoints Number of anchorpoints in the synthenic cloud.

cloud density Number of anchorpoints divided by the longest side of the bounding box.

dim Horizontal and vertical dimensions of the bounding box of the cloud.

15

3.5.8 The cloud anchorpoint table

CloudID A unique identifier for each synthenic cloud.

gene The name of the gene associated with the anchorpoint (x and y)

coord The coordinate of the anchorpoint in the dot matrix (x and y)

4 Post processing: i-Visualize

The post processing features of i-ADHoRe include the visualization of aligned multiplicons
and dot matrices. To visualize a specific multiplicon an extra executable i-visualize is
added. It takes two arguments: the .ini file and the multiplicon id to be visualized. Note
that the method uses the output files from i-adhore so these should be available and not
be modified. Also note that the color picking is random, so two runs of i-visualize will
have different colors for the boxes.

> i-visualize CONFIGURATIONFILE id

With id an integer number indicating the multiplicon id to be visualized.

4.1 Example of AlignmentMultiplion.svg

In figure 1 an example of an aligned multiplicon of level 4 (number of segments) is shown.
We see three different types of boxes:

• White boxes represent gaps introduced by the aligner

• Black boxes represent genes which have no homologous links with other genes in the
alignment.

• Coloured boxes do have a link with other genes. These are usually aligned on top of
each other. It is also possible to find boxes with the same color in the same segment.
They are tandem duplicates with a distance larger than the tandem gap.

• On the left side of the sequences the genome and listnames are written.

• Above every box the gene name is given.

Further on lines are drawn between homologs which haven’t been aligned by the algorithm.

4.2 Examples of GHM.png

Dot matrices are visualized with the parameter visualizeGHM or visGPairs. These can
be set in the input file and are described in the section on parameter settings. The first
one visualizes all dot matrices, the second one only the ones specified by the user.
Here we see a typical dot matrix between two chromosomes in Arabidopsis thaliana. The
dot matrix was generated in the collinear mode. We list all the different features found in
the figure:

• White dots: represent homologs between the two genelists which aren’t part of any
multiplicon or cloud which passed the statistical test.

16

AT2G46270 AT2G46280 AT2G46300 AT2G46310 AT2G46320 AT2G46330 AT2G46340 AT2G46360 AT2G46370 AT2G46375 AT2G46380 AT2G46390 AT2G46400 AT2G46410 AT2G46420 AT2G46430

AT3G61620 AT3G61630 AT3G61640 AT3G61650 AT3G61660 AT3G61670 AT3G61680 AT3G61690 AT3G61700 AT3G61710 AT3G61720 AT3G61730 AT3G61740 AT3G61750 AT3G61760

AT1G01450 AT1G01440 AT1G01430 AT1G01410 AT1G01400 AT1G01390 AT1G01380 AT1G01370 AT1G01360 AT1G01350 AT1G01340

AT4G01120 AT4G01110 AT4G01100 AT4G01090 AT4G01080 AT4G01070 AT4G01060 AT4G01050 AT4G01040 AT4G01030 AT4G01026 AT4G01023 AT4G01020 AT4G01010

AT1G64210 AT1G64220 AT1G64230 AT1G64235 AT1G64255 AT1G64280 AT1G64290 AT1G64300 AT1G64310 AT1G64320 AT1G64330 AT1G64340 AT1G64350 AT1G64355 AT1G64360 AT1G64370 AT1G64380 AT1G64385 AT1G64390 AT1G64400 AT1G64405 AT1G64410 AT1G64430

AT4G23740 AT4G23750 AT4G23760 AT4G23770 AT4G23780 AT4G23790 AT4G23800 AT4G23810 AT4G23820 AT4G23840 AT4G23850 AT4G23860 AT4G23870 AT4G23880 AT4G23882 AT4G23885 AT4G23890

AT4G27960 AT4G27950 AT4G27940 AT4G27930 AT4G27920 AT4G27910 AT4G27900

AT5G53320 AT5G53310 AT5G53300 AT5G53290 AT5G53280 AT5G53260 AT5G53250 AT5G53230 AT5G53220 AT5G53210 AT5G53200 AT5G53190 AT5G53180 AT5G53170 AT5G53160 AT5G53150 AT5G53140 AT5G53130

ath 2

ath 3

ath 1

ath 4

ath 1

ath 4

ath 4

ath 5

Figure 1: Example of a level-8 Multiplicon after Greedy Graph Alignment. This is multi-
plicon 7 in DatasetI

• Yellow dots: represent homologs between the two genelists which are part of a mul-
tiplicon or cloud which passed the statistical test.

• Red boxes: are the bounding boxes of multiplicons or clouds which haven’t passed
the statistical

• Green boxes: are the bounding boxes of multiplicons or clouds which are statistically
relevant

• Blue dots: represent the confidence interval of the linear regression performed on a
multiplicon. (not applicable for cloud mode)

17

Figure 2: Example of a Gene Homology Matrix (dot matrix) between two chromosomes in
Arabidopsis Thaliana

18

