
BRAKER User Guide
Contacts for Github Repository of BRAKER at https://github.com/Gaius-Augustus/BRAKER:

Katharina J. Hoff, University of Greifswald, Germany, katharina.hoff@uni-greifswald.de, +49 3834 420 4624

Tomas Bruna, Georgia Tech, U.S.A., bruna.tomas@gatech.edu

Authors of BRAKER

Katharina J. Hoffa, b, Simone Langea, Alexandre Lomsadzec, Tomas Brunac,

Mark Borodovskyc, d, e, Mario Stankea, b

[a] University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489 Greifswald,
Germany

[b] University of Greifswald, Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany

[c] Joint Georgia Tech and Emory University Wallace H Coulter Department of Biomedical Engineering, 30332 Atlanta, USA

[d] School of Computational Science and Engineering, 30332 Atlanta, USA

[e] Moscow Institute of Physics and Technology, Moscow Region 141701, Dolgoprudny, Russia

Figure 1: Current BRAKER authors, from left to right: Mario Stanke, Alexandre Lomsadze, Katharina J. Hoff, Tomas Bruna, and
Mark Borodovsky.

Funding

The development of BRAKER was supported by the National Institutes of Health (NIH) [GM128145 to M.B. and M.S.].

Contents
Authors
Funding
What is BRAKER?
Keys to successful gene prediction
Overview of modes for running BRAKER
Installation

Supported software versions
BRAKER

mailto:bruna.tomas@gatech.edu

Perl pipeline dependencies
BRAKER components
Bioinformatics software dependencies

Mandatory tools
Optional tools

Running BRAKER
BRAKER pipeline modes

BRAKER with RNA-Seq data
BRAKER with proteins of unknown evolutionary distance
BRAKER with proteins of short evolutionary distance
BRAKER with RNA-Seq and protein data

Description of selected BRAKER command line options
--ab_initio
--augustus_args=--some_arg=bla
--cores=INT
--fungus
--softmasking
--useexisting
--crf
--lambda=int
--UTR=on
--stranded=+,-,.,…
--makehub --email=your@mail.de

Output of BRAKER
Example data

Data description
Testing BRAKER with RNA-Seq data
Testing BRAKER with hints from proteins of unknown evolutionary distance
Testing BRAKER with hints from proteins of unknown evolutionary distance and RNA-Seq
Testing BRAKER with proteins of close homology
Testing BRAKER with proteins of close homology and RNA-Seq data (RNA-Seq supported training)
Testing BRAKER with proteins of close homoogy and RNA-Seq data (RNA-Seq and protein supported training)
Testing BRAKER with pre-trained parameters
Testing BRAKER with genome sequence

Starting BRAKER on the basis of previously existing BRAKER runs
Bug reporting

Reporting bugs on github
Common problems

Citing BRAKER and software called by BRAKER
License

What is BRAKER?
The rapidly growing number of sequenced genomes requires fully automated methods for accurate gene structure annotation.

With this goal in mind, we have developed BRAKER1R1, a combination of GeneMark-ET R2 and AUGUSTUS R3, R4, that uses
genomic and RNA-Seq data to automatically generate full gene structure annotations in novel genome.

However, the quality of RNA-Seq data that is available for annotating a novel genome is variable, and in some cases, RNA-Seq
data is not available, at all.

BRAKER2 is an extension of BRAKER1 which allows for fully automated training of the gene prediction tools GeneMark-EX
R14, R15, R17, F1 and AUGUSTUS from RNA-Seq and/or protein homology information, and that integrates the extrinsic evidence
from RNA-Seq and protein homology information into the prediction.

In contrast to other available methods that rely on protein homology information, BRAKER2 reaches high gene prediction
accuracy even in the absence of the annotation of very closely related species and in the absence of RNA-Seq data.

In this user guide, we will refer to BRAKER1 and BRAKER2 simply as BRAKER because they are executed by the same script
(braker.pl).

Keys to successful gene prediction
Use a high quality genome assembly. If you have a huge number of very short scaffolds in your genome assembly, those
short scaffolds will likely increase runtime dramatically but will not increase prediction accuracy.

Use simple scaffold names in the genome file (e.g. >contig1 will work better than
 >contig1my custom species namesome putative function /more/information/

 and lots of special characters %&!*(){}). Make the scaffold names in all your fasta
files simple before running any alignment program.

In order to predict genes accurately in a novel genome, the genome should be masked for repeats. This will avoid the
prediction of false positive gene structures in repetitive and low complexitiy regions. Repeat masking is also essential for
mapping RNA-Seq data to a genome with some tools (other RNA-Seq mappers, such as HISAT2, ignore masking
information). In case of GeneMark-EX and AUGUSTUS, softmasking (i.e. putting repeat regions into lower case letters and
all other regions into upper case letters) leads to better results than hardmasking (i.e. replacing letters in repetitive regions
by the letter N for unknown nucleotide). If the genome is masked, use the --softmasking flag of braker.pl .

Many genomes have gene structures that will be predicted accurately with standard parameters of GeneMark-EX and
AUGUSTUS within BRAKER. However, some genomes have clade-specific features, i.e. special branch point model in
fungi, or non-standard splice-site patterns. Please read the options section [options] in order to determine whether any of the
custom options may improve gene prediction accuracy in the genome of your target species.

Always check gene prediction results before further usage! You can e.g. use a genome browser for visual inspection of gene
models in context with extrinsic evidence data. BRAKER supports the generation of track data hubs for the UCSC Genome
Browser with MakeHub for this purpose.

Overview of modes for running BRAKER
BRAKER mainly features semi-unsupervised, extrinsic evidence data (RNA-Seq and/or protein spliced alignment information)

supported training of GeneMark-EX[F1] and subsequent training of AUGUSTUS with integration of extrinsic evidence in the final
gene prediction step. However, there are now a number of additional pipelines included in BRAKER. In the following, we give an
overview of possible input files and pipelines:

Genome file, only. In this mode, GeneMark-ES is trained on the genome sequence, alone. Long genes predicted by
GeneMark-ES are selected for training AUGUSTUS. Final predictions by AUGUSTUS are ab initio. This approach will likely
yield lower prediction accuracy than all other here described pipelines. (see Figure 2),

Figure 2: BRAKER pipeline A: training GeneMark-ES on genome data, only; ab initio gene prediction withAUGUSTUS

Genome and RNA-Seq file from the same species (see figure 3); this approach is suitable for short read RNA-Seq libraries
with a good coverage of the transcriptome, important: this approach requires that each intron is covered by many
alignments, i.e. it does not work with assembled transcriptome mappings. In principle, also alignments of long read RNA-Seq
data may lead to sufficient data for running BRAKER, but only if each transcript that will go into training was sequenced and
aligned to the genome multiple times. Please be aware that at the current point in time, BRAKER does not officially support
the integration of long read RNA-Seq data, yet.

Figure 3: BRAKER pipeline B: training GeneMark-ET supported by RNA-Seq spliced alignment information, prediction with
AUGUSTUS with that same spliced alignment information.

Genome file and database of proteins that may be of unknown evolutionary distance to the target species (see Figure 4);
this approach is particularly suitable if no RNA-Seq data is available. This method will work better with proteins from species
that are rather close to the target species, but accuracy will drop only very little if the reference proteins are more distant
from the target species. Important: This approach requires a database of protein families, i.e. many representatives of each

protein family must be present in the database. BRAKER has been tested with OrthoDB R19, successfully. The ProtHint R18

protein mapping database for generating required hints for BRAKER is available for download at https://github.com/gatech-
genemark/ProtHint. (You may add proteins of a closely related species to the OrthoDB fasta file in order to incorporate
additional evidence into gene prediction.)

Figure 4: BRAKER pipeline C: training GeneMark-TP on protein spliced alignment, start and stop information, prediction with
AUGUSTUS with that same information, in addition chained CDSpart hints. Proteins used here can be of longer evolutionary
distance to the target organism.

Genome and RNA-Seq file from the same species, and proteins that may be of unknown evolutionary distance to the target
species (see figure 5); important: this approach requires a database of protein families, i.e. many representatives of each
protein family must be present in the database, e.g. OrthoDB is suitable. (You may add proteins of a closely related species
to the OrthoDB fasta file in order to incorporate additional evidence into gene prediction.)

https://github.com/gatech-genemark/ProtHint

Figure 5: BRAKER pipeline D: training GeneMark-ETP/ETP+ supported by RNA-Seq alignment information and information from
proteins (proteins can be of longer evolutionary distance). Please be aware that GeneMark-ETP/ETP+ is still under development,
BRAKER can currently execute a precursor of the mature version. Prediction with AUGUSTUS using the information, in addition
chained CDSpart hints. Introns supported by both RNA-Seq and protein alignment information are treated as “true positive
introns”, their prediction in gene structures by GeneMark-ETP+ and AUGUSTUS is enforced. Important: It is not always best to
use all evidence! So far, we found this approach to work well for large genomes, but accuracy on small and medium sized
genomes is unstable. Please have a look at the poster from PAG 2020 before running this pipeline.

Genome file and file with proteins of short evolutionary distance (see Figure 6); this approach is suitable if RNA-Seq data is
not available and if the reference species is very closely related. *Note:* This pipeline is deprecated since pipeline C can
also use proteins of closely related species in addition to OrthoDB.

Figure 6: Additional pipeline B: training AUGUSTUS on the basis of spliced alignment information from proteins of a very closely
related species against the target genome.

Genome and RNA-Seq file and proteins of short evolutionary distance (see Figures 6 and 7). In both cases, GeneMark-ET is
trained supported by RNA-Seq data, and the resulting gene predictions are used for training AUGUSTUS. In approach A),
protein alignment information is used in the gene prediction step with AUGUSTUS, only. In approach C), protein spliced
alignment data is used to complement the training set for AUGUSTUS. The latter approach is in particular suitable if RNA-
Seq data does not produce a sufficiently high number of training gene structures for AUGUSTUS, and if a very closely
related and already annotated species is available. *Note:* This pipeline is deprecated since pipeline D can also use
proteins of closely related species in addition to OrthoDB.

Figure 7: Additional pipeline A: training GeneMark-ET supported by RNA-Seq spliced alignment information, prediction with
AUGUSTUS with spliced alignment information from RNA-Seq data and with gene features determined by alignments from
proteins of a very closely related species against the target genome. *Note:* This pipeline is deprecated since pipeline C can
also use proteins of closely related species in addition to OrthoDB.

Figure 8: Additional pipeline C: training GeneMark-ET on the basis of RNA-Seq spliced alignment information, training
AUGUSTUS on a set of training gene structures compiled from RNA-Seq supported gene structures predicted by GeneMark-ET
and spliced alignment of proteins of a very closely related species. *Note:* This pipeline is deprecated since pipeline D can also
use proteins of closely related species in addition to OrthoDB.

Installation

Supported software versions

At the time of release, this BRAKER version was tested with:

AUGUSTUS 3.3.3 F2

GeneMark-ES/ET/EP 4.48_3.60_lic

BAMTOOLS 2.5.1R5

SAMTOOLS 1.7-4-g93586edR6

ProtHint 2.2.0

GenomeThreader 1.7.0R7

Spaln 2.3.3d R8, R9, R10, F3

(Exonerate 2.2.0 R11)[F3]

NCBI BLAST+ 2.2.31+ R12, R13

DIAMOND 0.9.24

cdbfasta 0.99

cdbyank 0.981

BRAKER

Perl pipeline dependencies

Running BRAKER requires a Linux-system with bash and Perl. Furthermore, BRAKER requires the following CPAN-Perl
modules to be
installed:

 File::Spec::Functions

 Hash::Merge

 List::Util

 Logger::Simple

 Module::Load::Conditional

 Parallel::ForkManager

 POSIX

 Scalar::Util::Numeric

 YAML

For ProtHint, optionally used by BRAKER, also install:

 MCE::Mutex

 threads

On Ubuntu, for example, install the modules with CPANminusF4: sudo cpanm Module::Name , e.g. sudo cpanm Hash::Merge .

BRAKER also uses a Perl module helpMod.pm that is not available on CPAN. This module is part of the BRAKER release and
does not require
separate installation.

If you do not have root permissions on the Linux machine, try setting up an Anaconda (https://www.anaconda.com/distribution/)
environment as follows:

wget https://repo.anaconda.com/archive/Anaconda3-2018.12-Linux-x86_64.sh
bash bin/Anaconda3-2018.12-Linux-x86_64.sh # do not install VS (needs root privileges)
conda install -c anaconda perl
conda install -c bioconda perl-app-cpanminus
conda install -c bioconda perl-hash-merge
conda install -c bioconda perl-parallel-forkmanager
conda install -c bioconda perl-scalar-util-numeric
conda install -c bioconda perl-yaml
conda install -c bioconda perl-class-data-inheritable

https://www.anaconda.com/distribution/

conda install -c bioconda perl-exception-class
conda install -c bioconda perl-test-pod
conda install -c anaconda biopython
conda install -c bioconda perl-file-homedir
conda install -c bioconda perl-file-which # skip if you are not comparing to reference annotation
conda install -c bioconda perl-mce
conda install -c bioconda perl-threaded
cpanm Logger::Simple

Subsequently install BRAKER and other software "as usual" while being in your conda environment. Note: There is a bioconda
braker package, and a bioconda augustus package. They work. But they are usually lagging behind the development code of
both tools on github. We therefore recommend manual installation and usage of lastest sources.

BRAKER components

BRAKER is a collection of Perl scripts and a Perl module. The main script that will be called in order to run BRAKER is
 braker.pl . Additional Perl components are:

 align2hints.pl

 filterGenemark.pl

 filterIntronsFindStrand.pl

 startAlign.pl

 helpMod.pm

 findGenesInIntrons.pl

 downsample_traingenes.pl

All Perl scripts (files ending with *.pl) that are part of BRAKER must be executable in order to run BRAKER. This should
already be the case if you download BRAKER from GitHub. Executability may be overwritten if you e.g. transfer BRAKER on a
USB-stick to another computer. In order to check whether required files are executable, run the following command in the
directory that contains BRAKER Perl scripts:

ls -l *.pl

The output should be similar to this:

 -rwxr-xr-x 1 katharina katharina 18191 Mai 7 10:25 align2hints.pl
 -rwxr-xr-x 1 katharina katharina 6090 Feb 19 09:35 braker_cleanup.pl
 -rwxr-xr-x 1 katharina katharina 408782 Aug 17 18:24 braker.pl
 -rwxr-xr-x 1 katharina katharina 5024 Mai 7 10:25 downsample_traingenes.pl
 -rwxr-xr-x 1 katharina katharina 4542 Apr 3 2019 filter_augustus_gff.pl
 -rwxr-xr-x 1 katharina katharina 30453 Mai 7 10:25 filterGenemark.pl
 -rwxr-xr-x 1 katharina katharina 5754 Mai 7 10:25 filterIntronsFindStrand.pl
 -rwxr-xr-x 1 katharina katharina 7765 Mai 7 10:25 findGenesInIntrons.pl
 -rwxr-xr-x 1 katharina katharina 1664 Feb 12 2019 gatech_pmp2hints.pl
 -rwxr-xr-x 1 katharina katharina 2250 Jan 9 13:55 log_reg_prothints.pl
 -rwxr-xr-x 1 katharina katharina 4679 Jan 9 13:55 merge_transcript_sets.pl
 -rwxr-xr-x 1 katharina katharina 41674 Mai 7 10:25 startAlign.pl

It is important that the x in -rwxr-xr-x is present for each script. If that is not the case, run

`chmod a+x *.pl`

in order to change file attributes.

You may find it helpful to add the directory in which BRAKER perl scripts reside to your $PATH environment variable. For a
single bash session, enter:

 PATH=/your_path_to_braker/:$PATH
 export PATH

To make this $PATH modification available to all bash sessions, add the above lines to a startup script (e.g. ~/.bashrc).

Bioinformatics software dependencies

BRAKER calls upon various bioinformatics software tools that are not part of BRAKER. Some tools are obligatory, i.e. BRAKER
will not run at all if these tools are not present on your system. Other tools are optional. Please install all tools that are required
for running BRAKER in the mode of your choice.

Mandatory tools

GeneMark-EX

Download GeneMark-EXF1 from http://exon.gatech.edu/GeneMark/license_download.cgi. Unpack and install GeneMark-EX as
described in GeneMark-EX’s README file.

If already contained in your $PATH variable, BRAKER will guess the location of gmes_petap.pl , automatically. Otherwise,
BRAKER can find GeneMark-EX executables either by locating them in an environment variable GENEMARK_PATH , or by taking a
command line argument (--GENEMARK_PATH=/your_path_to_GeneMark-EX/gmes_petap/).

In order to set the environment variable for your current Bash session, type:

 export GENEMARK_PATH=/your_path_to_GeneMark-ET/gmes_petap/

Add the above lines to a startup script (e.g. ~/.bashrc) in order to make it available to all bash sessions.F5

Important: GeneMark-EX will only run if a valid key file resides in your home directory. The key file will expire after 200 days,
which means that you have to download a new GeneMark-EX release and a new key file after 200 days. The key file is
downloaded as gm_key.gz . Unpack the key file and move it to a hidden file in your home directory as follows:

cd # change to your home directory
gunzip gm_key_64.gz
mv gm_key_64 .gm_key

If you are running GeneMark-EX in an Anaconda environment, modify the shebang of all GeneMark-EX scripts to use that perl
version:

cd gm_et_linux_64/gmes_petap/
for f in bet_to_gff.pl bp_seq_select.pl build_mod.pl calc_introns_from_gtf.pl \
change_path_in_perl_scripts.pl gc_distr.pl get_sequence_from_GTF.pl \
gmes_petap.pl histogram.pl hmm_to_gtf.pl make_nt_freq_mat.pl \
parse_by_introns.pl parse_ET.pl parse_gibbs.pl parse_set.pl predict_genes.pl \
reformat_fasta.pl reformat_gff.pl rescale_gff.pl rnaseq_introns_to_gff.pl \
run_es.pl run_hmm_pbs.pl scan_for_bp.pl star_to_gff.pl verify_evidence_gmhmm.pl;

http://exon.gatech.edu/GeneMark/license_download.cgi

do
 cat $f | perl -pe 's/\/usr\/bin\/perl/\/usr\/bin\/env perl/' > $f.tmp
 mv $f.tmp $f
 chmod u+x $f
done

AUGUSTUS

Download AUGUSTUS from https://github.com/Gaius-Augustus/Augustus. Unpack AUGUSTUS and install AUGUSTUS
according to AUGUSTUS README.TXT . Do not use outdated AUGUSTUS versions from other sources, e.g. Debian
package or Bioconda package! BRAKER highly depends in particular on an up-to-date Augustus/scripts directory, and
other sources are often lagging behind!

You should compile AUGUSTUS on your own system in order to avoid problems with versions of libraries used by AUGUSTUS.
Compilation instructions are provided in the AUGUSTUS README.TXT file (Augustus/README.txt).

AUGUSTUS consists of augustus , the gene prediction tool, additional C++ tools located in Augustus/auxprogs and Perl
scripts located in Augustus/scripts . Perl scripts must be executable (see instructions in section BRAKER components.

The C++ tool bam2hints is an essential component of BRAKER. Sources are located in Augustus/auxprogs/bam2hints . Make
sure that you compile bam2hints on your system (it should be automatically compiled when AUGUSTUS is compiled, but in
case of problems with bam2hints , please read troubleshooting instructions in Augustus/auxprogs/bam2hints/README).

If you would like to train UTR parameters and integrate RNA-Seq coverage information into gene prediction with BRAKER (which
is possible only if an RNA-Seq bam-file is provided as extrinsic evidence) and utrrnaseq in the auxprogs directory are also
required. If compilation with the default Makefile fails, please read troubleshooting instructions in
 Augustus/auxprogs/utrrnaseq/README .

Since BRAKER is a pipeline that trains AUGUSTUS, i.e. writes species specific parameter files, BRAKER needs writing access
to the configuration directory of AUGUSTUS that contains such files (Augustus/config/). If you install AUGUSTUS globally on
your system, the config folder will typically not be writable by all users. Either make the directory where config resides
recursively writable to users of AUGUSTUS, or copy the config/ folder (recursively) to a location where users have writing
permission.

AUGUSTUS will locate the config folder by looking for an environment variable $AUGUSTUS_CONFIG_PATH . If the
 $AUGUSTUS_CONFIG_PATH
environment variable is not set, then BRAKER will look in the path ../config relative to the directory in which it finds an
AUGUSTUS
executable. Alternatively, you can supply the variable as a command line argument to BRAKER (--
AUGUSTUS_CONFIG_PATH=/your_path_to_AUGUSTUS/Augustus/config/). We recommend that you export the variable e.g. for your
current bash
session:

 export AUGUSTUS_CONFIG_PATH=/your_path_to_AUGUSTUS/Augustus/config/

In order to make the variable available to all Bash sessions, add the above line to a startup script, e.g. ~/.bashrc .

Important:

BRAKER expects the entire config directory of AUGUSTUS at $AUGUSTUS_CONFIG_PATH , i.e. the subfolders species with its
contents (at least generic) and extrinsic ! Providing an writable but empty folder at $AUGUSTUS_CONFIG_PATH will not work
for BRAKER. If you need
to separate augustus binary and $AUGUSTUS_CONFIG_PATH , we recommend that you recursively copy the un-writable config
contents to a writable location.

https://github.com/Gaius-Augustus/Augustus

You have a system-wide installation of AUGUSTUS at /usr/bin/augustus , an unwritable copy of config sits at
 /usr/bin/augustus_config/ . The folder /home/yours/ is writable to you. Copy with the following command (and additionally
set the then required variables):

cp -r /usr/bin/Augustus/config/ /home/yours/
export AUGUSTUS_CONFIG_PATH=/home/yours/augustus_config
export AUGUSTUS_BIN_PATH=/usr/bin
export AUGUSTUS_SCRIPTS_PATH=/usr/bin/augustus_scripts

Modification of $PATH

Adding adding directories of AUGUSTUS binaries and scripts to your $PATH variable enables your system to locate these tools,
automatically. It is not a requirement for running BRAKER to do this, because BRAKER will try to guess them from the location of
another
environment variable ($AUGUSTUS_CONFIG_PATH), or both directories can be supplied as command line arguments to
 braker.pl , but we recommend to add them to your $PATH variable. For your current bash session, type:

 PATH=:/your_path_to_augustus/bin/:/your_path_to_augustus/scripts/:$PATH
 export PATH

For all your BASH sessions, add the above lines to a startup script (e.g. ~/.bashrc).

Bamtools

Download BAMTOOLS (e.g. git clone https://github.com/pezmaster31/bamtools.git). Install
BAMTOOLS by typing the following in your shell:

 cd your-bamtools-directory mkdir build cd build cmake .. make

If already in your $PATH variable, BRAKER will find bamtools, automatically. Otherwise, BRAKER can locate the bamtools
binary either
by using an environment variable $BAMTOOLS_PATH , or by taking a command line argument (--

BAMTOOLS_PATH=/your_path_to_bamtools/bin/ F6). In order to set the environment variable e.g. for your current bash session,
type:

 export BAMTOOLS_PATH=/your_path_to_bamtools/bin/

Add the above line to a startup script (e.g. ~/.bashrc) in order to set the environment variable for all bash sessions.

NCBI BLAST+ or DIAMOND

You can use either NCBI BLAST+ or DIAMOND for removal of redundant training genes. You do not need both tools. If
DIAMOND is present, it will be preferred because it is much faster.

On Ubuntu, install NCBI BLAST+ with sudo apt-get install ncbi-blast+ .

If already in your $PATH variable, BRAKER will find blastp, automatically. Otherwise, BRAKER can locate the blastp binary
either by using an environment variable $BLAST_PATH , or by taking a command line argument (--
BLAST_PATH=/your_path_to_blast/). In order to set the environment variable e.g. for your current bash session, type:

 export BLAST_PATH=/your_path_to_blast/

Add the above line to a startup script (e.g. ~/.bashrc) in order to set the environment variable for all bash sessions.

If you decide for DIAMOND, obtain and unpack as follows:

 wget http://github.com/bbuchfink/diamond/releases/download/v0.9.24/diamond-linux64.tar.gz
 tar xzf diamond-linux64.tar.gz

If already in your $PATH variable, BRAKER will find diamond, automatically. Otherwise, BRAKER can locate the diamond binary
either by using an environment variable $DIAMOND_PATH , or by taking a command line argument (--
DIAMOND_PATH=/your_path_to_diamond). In order to set the environment variable e.g. for your current bash session, type:

 export DIAMOND_PATH=/your_path_to_diamond/

Add the above line to a startup script (e.g. ~/.bashrc) in order to set the environment variable for all bash sessions.

Optional tools

ProtHint

ProtHint is a pipeline for generating hints for GeneMark-EX and AUGUSTUS from proteins of unknown evolutionary distance
developed by Tomas Bruna and Alexandre Lomsadze at Mark Borodovsky's lab. BRAKER can run ProtHint, or ProtHint can be
executed as a separate step during data preparation. ProtHint is available from https://github.com/gatech-genemark/ProtHint.
Download as follows:

 git clone https://github.com/gatech-genemark/ProtHint.git

ProtHint has software requirements of its own. In addition to the Perl modules required by BRAKER, it needs

MCE::Mutex
threads

ProtHint also requires Python 3.3. or higher.

ProtHint requires DIAMOND, Spaln, and optionally ProSplign. The requirement of GeneMark-ES will already be fulfilled if you
installed BRAKER dependencies above. For further installation instructions, please check https://github.com/gatech-
genemark/ProtHint.

BRAKER will try to locate the prothint.py executable by using an environment variable $ALIGNMENT_TOOL_PATH . Alternatively,
this can be supplied as command line argument (--ALIGNMENT_TOOL_PATH=/your/path/to/ProtHint/bin).

Samtools

Samtools is not required for running BRAKER if all your files are formatted, correctly (i.e. all sequences should have short and
unique
fasta names). If you are not sure whether all your files are fomatted correctly, it might be helpful to have Samtools installed
because BRAKER can automatically fix certain format issues by using Samtools.

As a prerequisite for Samtools, download and install htslib (e.g.
 git clone https://github.com/samtools/htslib.git , follow the htslib documentation for installation).

https://github.com/gatech-genemark/ProtHint
https://github.com/gatech-genemark/ProtHint

Download and install Samtools (e.g. git clone git://github.com/samtools/samtools.git), subsequently follow
Samtools documentation for installation).

If already in your $PATH variable, BRAKER will find samtools, automatically. Otherwise, BRAKER can find Samtools either by
taking a
command line argument (--SAMTOOLS_PATH=/your_path_to_samtools/), or by using an environment variable $SAMTOOLS_PATH .
For exporting the variable, e.g. for your current bash session, type:

 export SAMTOOLS_PATH=/your_path_to_samtools/

Add the above line to a startup script (e.g. ~/.bashrc) in order to set the environment variable for all bash sessions.

Python3 and Biopython

If Python3 and Biopython are installed, BRAKER can generate FASTA-files with coding sequences and protein sequences

predicted by AUGUSTUS and generate track data hubs for visualization of a BRAKER run with MakeHub R16. If Python3 (and
cdbfasta/cdbyank) is available, BRAKER is able to correct AUGUSTUS genes with in frame stop codons (spliced stop codons).
All are an optional steps. The first can be disabled with the command-line flag --skipGetAnnoFromFasta , the second can be
activated by using the command-line options --makehub --email=your@mail.de , the last can be deactivated with --
skip_fixing_broken_genes ; Python3 and Biopython are not required if neither of these optional steps shall be performed.

On Ubuntu, Python3 is usually installed by default. Install the Python3 package manager with:

`sudo apt-get install python3-pip`

Subsequently, install Biopython with:

`sudo pip3 install biopython`

On Ubuntu, python3 will be in your $PATH variable, by default, and BRAKER will automatically locate it. However, you have the
option to specify the python3 binary location in two other ways:

1. Export an environment variable $PYTHON3_PATH , e.g. in your ~/.bashrc file:

 export PYTHON3_PATH=/path/to/python3/

2. Specify the command line option --PYTHON3_PATH=/path/to/python3/ to braker.pl .

cdbfasta

cdbfasta and cdbyank are required by BRAKER for correcting AUGUSTUS genes with in frame stop codons (spliced stop
codons) using the AUGUSTUS script fix_in_frame_stop_codon_genes.py. This can be skipped with --
skip_fixing_broken_genes .

On Ubuntu, install cdbfasta with:

`sudo apt-get install cdbfasta`

For other systems, you can for example obtain cdbfasta from https://github.com/gpertea/cdbfasta, e.g.:

https://github.com/gpertea/cdbfasta

 git clone https://github.com/gpertea/cdbfasta.git`
 cd cdbfasta
 make all

On Ubuntu, cdbfasta and cdbyank will be in your $PATH variable after installation, and BRAKER will automatically locate them.
However, you have the option to specify the cdbfasta and cdbyank binary location in two other ways:

1. Export an environment variable $CDBTOOLS_PATH , e.g. in your ~/.bashrc file:

 export CDBTOOLS_PATH=/path/to/cdbtools/

2. Specify the command line option --CDBTOOLS_PATH=/path/to/cdbtools/ to braker.pl .

GenomeThreader

Note: Support of GenomeThreader within BRAKER is deprecated.

This tool is required, only, if you would like to run protein to genome alignments with BRAKER using GenomeThreader. This is a
suitable approach if an annotated species of short evolutionary distance to your target genome is available. Download
GenomeThreader from http://genomethreader.org/. Unpack and install according to gth/README .

BRAKER will try to locate the GenomeThreader executable by using an environment variable $ALIGNMENT_TOOL_PATH .
Alternatively, this can be supplied as command line argument (--ALIGNMENT_TOOL_PATH=/your/path/to/gth).

Spaln

This tool is required if you run ProtHint or if you would like to run protein to genome alignments with BRAKER using Spaln
outside of ProtHint. We recommend running Spaln through ProtHint for BRAKER. ProtHint brings along a Spaln binary. If that
does not work on your system, download Spaln from https://github.com/ogotoh/spaln. Unpack and install according to
 spaln/doc/SpalnReadMe22.pdf .

BRAKER will try to locate the Spaln executable by using an environment variable $ALIGNMENT_TOOL_PATH . Alternatively, this can
be supplied as command line argument (--ALIGNMENT_TOOL_PATH=/your/path/to/spaln).

Exonerate

Note: Support of Exonerate within BRAKER is deprecated.

This tool is required, only, if you would like to run protein to genome alignments with BRAKER using Exonerate. This is a suitable
approach if an annotated species of short evolutionary distance to your target genome is available. (We recommend the usage of
GenomeThreader instad of Exonerate because Exonerate is comparably slower and has lower specificity than
GenomeThreader.) Download Exonerate from https://github.com/nathanweeks/exonerate. Unpack and install according to
 exonerate/README . (On Ubuntu, download and install by typing sudo apt-get install exonerate .)

BRAKER will try to locate the Exonerate executable by using an environment variable $ALIGNMENT_TOOL_PATH . Alternatively, this
can be supplied as command line argument (--ALIGNMENT_TOOL_PATH=/your/path/to/exonerate).

MakeHub

If you wish to automaticaly generate a track data hub of your BRAKER run, the MakeHub software, available at
https://github.com/Gaius-Augustus/MakeHub is required. Download the software (either by running git clone
https://github.com/Gaius-Augustus/MakeHub.git , or by
picking a release from https://github.com/Gaius-Augustus/MakeHub/releases. Extract the release package if you downloaded a
release (e.g. unzip MakeHub.zip or tar -zxvf MakeHub.tar.gz .

http://genomethreader.org/
https://github.com/ogotoh/spaln
https://github.com/nathanweeks/exonerate
https://github.com/Gaius-Augustus/MakeHub
https://github.com/Gaius-Augustus/MakeHub/releases

BRAKER will try to locate the make_hub.py script by using an environment variable $MAKEHUB_PATH . Alternatively, this can be
supplied as command line argument (--MAKEHUB_PATH=/your/path/to/MakeHub/). BRAKER can also try to guess the location
of MakeHub on your system.

Eval

In some (non de novo annotation) scenarios, BRAKER will be run to benchmark BRAKER predictions against an existing

reference annotation (option --annot=annot,gtf). For doing this, BRAKER uses the Eval package R17.

Eval is available for download from http://mblab.wustl.edu/software.html. After extraction, add the location of eval scripts to your
 $PATH :

 PATH=/path/to/eval:$PATH

BRAKER will try to locate the eval scripts by searching evaluate_gtf.pl on your system, i.e. the eval scripts must be in your
 $PATH for usage with BRAKER.

Running BRAKER

Different BRAKER pipeline modes

In the following, we describe “typical” BRAKER calls for different input data types. In general, we recommend that you run
BRAKER on genomic sequences that have been softmasked for Repeats. If your genome has been softmasked, include the --
softmasking flag in your BRAKER call!

BRAKER with RNA-Seq data

This approach is suitable for genomes of species for which RNA-Seq libraries with a good coverage of the transcriptome are
available. The pipeline is illustrated in Figure 2.

BRAKER can either extract RNA-Seq spliced alignment information from bam files, or it can use such extracted information,
directly.

In order to run BRAKER with RNA-Seq data supplied as bam file(s) (in case of multiple files, separate them by comma), run:

 braker.pl --species=yourSpecies --genome=genome.fasta \
 --bam=file1.bam,file2.bam

In order to run BRAKER with RNA-Seq spliced alignment information that has already been extracted, run:

 braker.pl --species=yourSpecies --genome=genome.fasta \
 --hints=hints1.gff,hints2.gff

The format of such a hints file must be as follows (tabulator separated file):

 chrName b2h intron 6591 8003 1 + . pri=4;src=E
 chrName b2h intron 6136 9084 11 + . mult=11;pri=4;src=E
 ...

http://mblab.wustl.edu/software.html

The source b2h in the second column and the source tag src=E in the last column are essential for BRAKER to determine
whether a hint has been generated from RNA-Seq data.

Training and prediction of UTRs, integration of coverage information

If RNA-Seq (and only RNA-Seq) data is provided to BRAKER as a bam-file, and if the genome is softmasked for repeats,
BRAKER can automatically train UTR parameters for AUGUSTUS. After successful training of UTR parameters, BRAKER will
automatically predict genes including coverage information form RNA-Seq data. Example call:

braker.pl --species=yourSpecies --genome=genome.fasta \
 --bam=file.bam --softmasking --UTR=on

Warnings:

1) This feature is experimental!

2) --UTR=on is currently not compatible with bamToWig.py as released in AUGUSTUS 3.3.3; it requires the current development
code version from the github repository (git clone https://github.com/Gaius-Augustus/Augustus.git).

3) --UTR=on increases memory consumption of AUGUSTUS. Carefully monitor jobs if your machine was close to maxing RAM
without --UTR=on! Reducing the number of cores will also reduce RAM consumption.

4) UTR prediction sometimes improves coding sequence prediction accuracy, but not always. If you try this feature, carefully
compare results with and without UTR parameters, afterwards (e.g. in UCSC Genome Browser).

Stranded RNA-Seq alignments

For running BRAKER without UTR parameters, it is not very important whether RNA-Seq data was generated by a stranded
protocol (because spliced alignments are ’artificially stranded’ by checking the splice site pattern). However, for UTR training and
prediction, stranded libraries may provide information that is valuable for BRAKER.

After alignment of the stranded RNA-Seq libraries, separate the resulting bam file entries into two files: one for plus strand
mappings, one for minus strand mappings. Call BRAKER as follows:

braker.pl --species=yourSpecies --genome=genome.fasta \
 --softmasking --bam=plus.bam,minus.bam --stranded=+,- \
 --UTR=on

You may additionally include bam files from unstranded libraries. Those files will not used for generating UTR training examples,
but they will be included in the final gene prediction step as unstranded coverage information, example call:

braker.pl --species=yourSpecies --genome=genome.fasta \
 --softmasking --bam=plus.bam,minus.bam,unstranded.bam \
 --stranded=+,-,. --UTR=on

Warning: This feature is experimental and currently has low priority on our maintenance list!

BRAKER with proteins of unknown evolutionary distance

This approach is suitable for genomes of species for which no RNA-Seq libraries are available. A (large) database of proteins
(with possibly longer evolutionary distance to the target species) may be used in this case. The ProtHint version that is currently
integrated in BRAKER is illustrated in figure 9.

https://github.com/Gaius-Augustus/Augustus.git)

Figure 9: ProtHint protein mapping pipeline for proteins of unkown evolutionary distance. Pipeline automatically determines which
alignments are from close relatives, and which are from rather distant relatives.

For running BRAKER in this mode, type:

 braker.pl --genome=genome.fa --prot_seq=protein.fa \
 --epmode --softmasking

We recommend using OrthoDB as basis for protein.fa. You can of course add additional protein sequences to that file, or try with
a completely different database. Any database will need several representatives for each protein, though.

Instead of having BRAKER run ProtHint, you can also start BRAKER with hints already produced by ProtHint. Please have a look
at section Starting BRAKER on the basis of previously existing BRAKER runs for this. We currently do not recommend to
generate the hints files from ProtHint outside of BRAKER since numerous post processing steps are carried out within BRAKER.

The format of hintsfile.gff for AUGUSTUS in this mode looks like this:

2R ProtHint intron 11506230 11506648 4 + . src=M;mult=4;pri=4
2R ProtHint intron 9563406 9563473 1 + . grp=69004_0:001de1_702_g;src=C;pri=4;
2R ProtHint intron 8446312 8446371 1 + . grp=43151_0:001cae_473_g;src=C;pri=4;
2R ProtHint intron 8011796 8011865 2 - . src=P;mult=1;pri=4;

The prediction of all hints with src=M will be enforced. Hints with src=C are 'chained evidence', i.e. they will only be incorporated
if all members of the group (grp=…) can be incorporated. All other hints have src=P in the last column. Supported features in
column 3 are intron, start_codon, stop_codon and CDSpart.

The format of prothint.gff for GeneMark-EP looks like this:

2R ProtHint Intron 10479911 10479963 2 - . al_score=0.273752; splice_sites=gt_ag; topProt=TRUE;
2R ProtHint start_codon 11244290 11244292 1 + 0 al_score=0.304132; topProt=TRUE; CDS_overlap=0;
2R ProtHint stop_codon 11340635 11340637 2 - 0 al_score=0.0247934;

All hints in above file are used during training of GeneMark-EP. Supported features in column 3 are Intron, start_codon and
stop_codon.

The format of evidence.gff for GeneMark-EP looks like this:

2R ProtHint Intron 7705590 7705645 5 - . al_score=0.26192; splice_sites=gt_ag;
2R ProtHint stop_codon 11339257 11339259 4 - 0 al_score=0.0958678;

The prediction of features in evidence.gff will be enforced by GeneMark-EP+. Supported features in column 3 are Intron,
start_codon and stop_codon.

BRAKER with proteins of short evolutionary distance

This approach is suitable if RNA-Seq data for the species of the target genome is not available and if a well annotated and very
closely related reference species is available and you don't want to use the approach for proteins of unknown evolutionary
distance.

For running BRAKER in this mode, type:

 braker.pl --species=yourSpecies --genome=genome.fasta \
 --prot_seq=proteins.fa --prg=gth \
 --ALIGNMENT_TOOL_PATH=/path/to/gth/binary \
 --trainFromGth

It is possible to generate protein alignments externally, prior running BRAKER, itself. The compatible command for running
GenomeThreader prior running BRAKER, is:

 gth -genomic genome.fa -protein protein.fa -gff3out \
 -skipalignmentout -o gth.aln

In order to use such externally created alignment files, run:

 braker.pl --species=yourSpecies --genome=genome.fasta \
 --prot_aln=proteins.aln --prg=gth --trainFromGth

It is also possible to run BRAKER in this mode using an already prepared hints file. In this case, run:

 braker.pl --species=yourSpecies --genome=genome.fasta \
 --hints=hints.gff --prg=gth --trainFromGth

Format of the hints file should look like this:

 chrName gth2h CDSpart 105984 106633 . - . src=P;grp=FBpp0285205;pri=4
 chrName gth2h start 106646 106648 . - . src=P;grp=FBpp0285205;pri=4

Supported features in column 3 are intron, CDSpart, start, stop.

BRAKER with RNA-Seq and protein data

The native mode for running BRAKER with RNA-Seq and protein data is --etpmode . This will call GeneMark-ETP (which is
currently only available as a premature version by using GeneMark-ES/ET/EP/EP+), which will use RNA-Seq and protein hints
for training GeneMark-ETP. Hints that are supported by both sources and proteins hints of particularly high quality are enforced in
gene prediction with GeneMark-ETP. Subsequently, AUGUSTUS is trained on GeneMark-ETP predictions and genes with hints
are predicted by AUGUSTUS. To call the pipeline in this mode, run:

 braker.pl --genome=genome.fa --prot_seq=orthodb.fa \
 --hints=rnaseq.hints --etpmode --softmasking

You can or course replace the rnaseq.gff hints file by a BAM-file, e.g. --bam=ranseq.bam .

In addition, the following pipelines can be executed by BRAKER (deprecated pipelines):

Adding protein data of short evolutionary distance to gene prediction step

Extending training gene set with proteins of short evolutionary distance

Adding protein data of short evolutionary distance to gene prediction step

This pipeline is illustrated in Figure 7.

In general, add the options

 --prot_seq=proteins.fa --prg=(gth|exonerate|spaln)

to the BRAKER call that is described in section BRAKER with RNA-Seq data. Select one protein alignment tool from
GenomeThreader (gth , recommended), Spaln (spaln) or Exonerate (exonerate). Of course, you may also specify the
protein information as protein alignment files or hints files as described in section BRAKER with proteins of short evolutionary
distance). This may result in a call similar to:

 braker.pl --species=yourSpecies --genome=genome.fasta \
 --bam=file1.bam,file2.bam --prot_seq=proteins.fa \
 --prg=(gth|exonerate|spaln)

Extending training gene set with proteins of short evolutionary distance

If the number of training gene structures identified by RNA-Seq data, only, seems to be too small, you may add training gene
structures generated by protein alignments with GenomeThreader to the training gene set. This pipeline is illustrated in Figure 8.

In general, add the options

 --prot_seq=proteins.fa --prg=gth --gth2traingenes

to the BRAKER call that is described in section BRAKER with RNA-Seq data. This may result in a call similar to:

 braker.pl --species=yourSpecies --genome=genome.fasta \
 --bam=file1.bam,file2.bam --prot_seq=proteins.fa \
 --prg=gth --gth2traingenes

Description of selected BRAKER command line options

Please run braker.pl --help to obtain a full list of options.

--epmode

Run BRAKER in EP-mode, i.e. with proteins of unknown evolutionary distance as processed by ProtHint within BRAKER. Should
be provided with --prot_seq=orthodb.fa .

--etpmode

Run BRAKER in ETP-mode, i.e. with proteins of unknown evolutionary distance processed by ProtHint, and with RNA-Seq data.
Should to be provided with prot_seq=orthodb.fa and additional RNA-Seq data can be provided either as additional hints file,
or as --bam=rnaseq.bam .

--ab_initio

Compute AUGUSTUS ab initio predictions in addition to AUGUSTUS predictions with hints (additional output files:
 augustus.ab_initio.* . This may be useful for estimating the quality of training gene parameters when inspecting predictions in
a Browser.

--augustus_args="--some_arg=bla"

One or several command line arguments to be passed to AUGUSTUS, if several arguments are given, separate them by
whitespace, i.e. "--first_arg=sth --second_arg=sth" . This may be be useful if you know that gene prediction in your
particular species benefits from a particular AUGUSTUS argument during the prediction step.

--cores=INT

Specifies the maximum number of cores that can be used during computation. BRAKER has to run some steps on a single core,
others can take advantage of multiple cores. The optimal core number of all steps is 8. If you use more than 8 cores, this will not
speed up all parallelized steps, in particular, the time consuming optimize_augustus.pl will not use more than 8 cores.
However, if you don’t mind some cores being idle, using more than 8 cores will speed up other steps.

--fungus

GeneMark-EX option: run algorithm with branch point model. Use this option if you genome is a fungus.

--softmasking

Softmasking option for soft masked genome files. (Disabled by default.)

--useexisting

Use the present config and parameter files if they exist for 'species'; will overwrite original parameters if BRAKER performs an
AUGUSTUS training.

--crf

Execute CRF training for AUGUSTUS; resulting parameters are only kept for final predictions if they show higher accuracy than
HMM parameters. This increases runtime!

--lambda=int

Change the parameter λ of the Poisson distribution that is used for downsampling training genes according to their
number of introns (only genes with up to 5 introns are downsampled). The default value is $\lambda=2$. You might want to set it
to 0 for organisms that mainly have single-exon genes. (Generally, single-exon genes contribute less value to increasing
AUGUSTUS parameters compared to genes with many exons.)

--UTR=on

Generate UTR training examples for AUGUSTUS from RNA-Seq coverage information, train AUGUSTUS UTR parameters and
predict genes with AUGUSTUS and UTRs, including coverage information for RNA-Seq as evidence. This flag only works if --
softmasking is also enabled, and if the only extrinsic evidence provided are bam files. This is an experimental feature!

If you performed a BRAKER run without --UTR=on, you can add UTR parameter training and gene prediction with UTR
parameters (and only RNA-Seq hints) with the following command:

braker.pl --UTR=on --softmasking --genome=genome.fa --bam=rnaseq.bam \
 --workingdir=some_new_working_directory \
 --AUGUSTUS_hints_preds=augustus.hints.gtf --flanking_DNA=2000 \
 --species=somespecies --useexisting

Modify augustus.hints.gtf to point to the AUGUSTUS predictions with hints from previous BRAKER run; modify flaning_DNA
value to the flanking region from the log file of your previous BRAKER run; modify some_new_working_directory to the location
where BRAKER should store results of the additional BRAKER run; modify somespecies to the species name used in your
previous BRAKER run.

--stranded=+,-,.,…

If --UTR=on is enabled, strand-separated bam-files can be provided with --bam=plus.bam,minus.bam . In that case, --
stranded=... should hold the strands of the bam files (+ for plus strand, - for minus strand, . for unstranded). Note that
unstranded data will be used in the gene prediction step, only, if the parameter --stranded=... is set. This is an experimental
feature!

--makehub --email=your@mail.de

If --makehub and --email=your@mail.de (with your valid e-mail adress) are provided, a track data hub for visualizing results
with the UCSC Genome Browser will be generated using MakeHub (https://github.com/Gaius-Augustus/MakeHub).

--gc_probability=DECIMAL

By default, GeneMark-ES/ET uses a probability of 0.001 for predicting the donor splice site pattern GC (instead of GT). It may
make sense to increase this value for species where this donor splice site is more common. For example, in the species
Emiliania huxleyi, about 50% of donor splice sites have the pattern GC (https://media.nature.com/original/nature-
assets/nature/journal/v499/n7457/extref/nature12221-s2.pdf, page 5).

Output of BRAKER

BRAKER produces several important output files in the working directory.

augustus.hints.gtf: Genes predicted by AUGUSTUS with intron hints from given extrinsic evidence. This file will be missing if
BRAKER was run with the option --esmode .

augustus.hints_utr.gtf: Genes predicted by AUGUSTUS with UTR parameters and coverage information from RNA-Seq data
in GTF-format. The file will only be present if BRAKER was run with the option --UTR=on and a RNA-Seq BAM-file.

augustus.ab_initio.gtf: Genes predicted by AUGUSTUS in ab initio mode in GTF-format. The file will always be present if
AUGUSTUS has been run with the option --esmode . Otherwise, it will only be present if BRAKER was run with the option
 --AUGUSTUS_ab_initio .

augustus.ab_initio_utr.gtf: Genes predicted by AUGUSTUS with UTR parameters in ab initio mode in GTF-format. This file
will only be present if BRAKER was executed with the options --UTR=on and a RNA-Seq BAM-file, and with the option --
AUGUSTUS_ab_initio .

mailto:--email=your@mail.de
https://github.com/Gaius-Augustus/MakeHub
https://media.nature.com/original/nature-assets/nature/journal/v499/n7457/extref/nature12221-s2.pdf

GeneMark-E*/genemark.gtf: Genes predicted by GeneMark-ES/ET/EP/EP+ in GTF-format. This file will be missing if
BRAKER was executed with proteins of close homology and the option --trainFromGth .

braker.gtf: All transcript variants predicted either by AUGUSTUS (with hints if available) or by GeneMark-ES/ET/EP/EP+.

hintsfile.gff: The extrinsic evidence data extracted from RNAseq.bam and/or protein data.

AUGUSTUS output files may be present with the following name endings and formats:

GTF-format is always produced.

GFF3-format is produced if the flat --gff3 was specified to BRAKER.

Coding sequences in FASTA-format are produced if the flag --skipGetAnnoFromFasta was not set.

Protein sequence files in FASTA-format are produced if the flag --skipGetAnnoFromFasta was not set.

For details about gtf format, see http://www.sanger.ac.uk/Software/formats/GFF/. A GTF-format file contains one line per
predicted exon. Example:

 HS04636 AUGUSTUS initial 966 1017 . + 0 transcript_id "g1.1"; gene_id "g1";
 HS04636 AUGUSTUS internal 1818 1934 . + 2 transcript_id "g1.1"; gene_id "g1";

The columns (fields) contain:

 seqname source feature start end score strand frame transcript ID and gene ID

If the --makehub option was used and MakeHub is available on your system, a hub directory beginning with the name hub_ will
be created. Copy this directory to a publicly accessible web server. A file hub.txt resides in the directory. Provide the link to
that file to the UCSC Genome Browser for visualizing results.

Example data
An incomplete example data set is contained in the directory BRAKER/example . In order to complete the data set, please
download the RNA-Seq alignment file (134 MB) with wget :

 cd BRAKER/example
 wget http://bioinf.uni-greifswald.de/bioinf/braker/RNAseq.bam

The example data set was not compiled in order to achieve optimal prediction accuracy, but in order to test pipeline components.

Data description

Data corresponds to Drosophila melanogaster chromosome 2R from flybase release R5, first 12000000 nucleotides.

RNA-Seq alignments were obtained by mapping Illumina paired-end librariy SRR023505 to the genome file using STAR with
standard parameters (single pass mapping).

For prot.fa (representative for proteins of close homology), Protein sequences from Drosophila ananassae release R1.05
were aligned to the genome sequence of Drosophila melanogaster chromosome R2 using GenomeThreader with parameters -
gff3out -skipalignmentout -paralogs -prseedlength 20 -prhdist 2 -

http://www.sanger.ac.uk/Software/formats/GFF/

gcmincoverage 80 -prminmatchlen 20 . Protein sequence records of mapped proteins were stored in
proteins.fa.

For orthodb_small.fa , the Arthopoda section of OrthoDB v9 was randomly downsized to contain only 500 entries.

List of files:

 genome.fa - genome file in fasta format

 RNAseq.bam - RNA-Seq alignment file in bam format (this file is not in github, it must be downloaded separately from
http://bioinf.uni-greifswald.de/bioinf/braker/RNAseq.bam)

 RNAseq.hints - RNA-Seq hints (can be used instead of RNAseq.bam as RNA-Seq input to BRAKER)

 prot.fa - protein sequences of close homology in fasta format

 orthodb_small.fa - small proportion of OrthoDB in fasta format

Testing BRAKER is time consuming because a full test requires the assembly of sufficient training data and subsequent training
of gene predictors. Consider running BRAKER threaded (e.g. --cores=8) for testing. You can also select the --skipOptimize
option for all tests that include training of AUGUSTUS in order to speed up testing.

The below given commands assume that you configured all paths to tools by exporting bash variables.

The example data set also contains scripts tests/test*.sh that will execute below listed commands for testing BRAKER with
the example data set. You find example results of AUGUSTUS and GeneMark-EX in the folder results/test* . Be aware that
BRAKER contains several parts where random variables are used, i.e. results that you obtain when running the tests must not be
exactly identical.

We give runtime estimations derived from computing on a single core Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz.

Testing BRAKER with RNA-Seq data

The following command will test the pipeline according to Figure 3 (implemented in test1.sh):

 braker.pl --genome=genome.fa --bam=RNAseq.bam \
 --softmasking

Runtime of this command is ~174 minutes.

Testing BRAKER with hints from proteins of unknown evolutionary
distance

The following command will test the pipeline according to Figure 4 (implemented in test2.sh):

 braker.pl --genome=../genome.fa --prot_seq=../orthodb_small.fa \
 --epmode --softmasking

Runtime of this command is ~24 minutes (including the runtime of ProtHint).

Testing BRAKER with hints from proteins of unknown evolutionary
distance and RNA-Seq

http://bioinf.uni-greifswald.de/bioinf/braker/RNAseq.bam

The following command will test a pipeline that first trains GeneMark-ETP with protein and RNA-Seq hints and subsequently
trains AUGUSTUS on the basis of GeneMark-ETP predictions. AUGUSTUS predictions are also performed with hints from both
sources, see Figure 5, implemented in test3.sh :

 braker.pl --genome=../genome.fa --prot_seq=../orthodb_small.fa \
 --bam=../RNAseq.bam --etpmode --softmasking

Runtime of this command is ~380 minutes.

Testing BRAKER with proteins of close homology

The following command will test the pipeline according to Figure 6 (implemented in test4.sh):

 braker.pl --genome=genome.fa --prot_seq=prot.fa \
 --prg=gth --trainFromGth --softmasking

Runtime of this command is ~143 minutes.

Testing BRAKER with proteins of close homology and RNA-Seq
data (RNA-Seq supported training)

The following command will test the pipeline according to Figure 7 (implemented in test5.sh):

 braker.pl --genome=genome.fa --prot_seq=prot.fa \
 --prg=gth --bam=RNAseq.bam --softmasking

Runtime of this command is ~302 minutes.

Testing BRAKER with proteins of close homoogy and RNA-Seq data
(RNA-Seq and protein supported training)

The following command will test the pipeline according to Figure 8 (implemented in test6.sh):

braker.pl --genome=genome.fa --prot_seq=prot.fa \
 --prg=gth --bam=RNAseq.bam --gth2traingenes \
 --softmasking

Runtime of this command is ~236 minutes.

Testing BRAKER with pre-trained parameters

The training step of all pipelines can be skipped with the option --skipAllTraining . This means, only AUGUSTUS predictions
will be performed, using pre-trained, already existing parameters. For example, you can predict genes with the command
(implemented in test7.sh):

 braker.pl --genome=genome.fa --bam=RNAseq.bam \
 --species=fly --skipAllTraining --softmasking

Runtime of this command is ~55 minutes.

Testing BRAKER with genome sequence

Implemented in test8.sh . Call:

 braker.pl --genome=genome.fa --esmode --softmasking

Runtime of this command is ~382 minutes.

Starting BRAKER on the basis of previously existing
BRAKER runs
There is currently no clean way to restart a failed BRAKER run (after solving some problem). However, it is possible to start a
new BRAKER run based on results from a previous run -- given that the old run produced the required intermediate results. We
will in the following refer to the old working directory with variable ${BRAKER_OLD} , and to the new BRAKER working directory
with ${BRAKER_NEW} . The file what-to-cite.txt will always only refer to the software that was actually called by a particular
run. You might have to combine the contents of ${BRAKER_NEW}/what-to-cite.txt with ${BRAKER_OLD}/what-to-cite.txt for
preparing a publication. The following figure illustrates at which points BRAKER run may be intercepted.

Figure 10: Points for intercepting a BRAKER run and reusing intermediate results in a new BRAKER run.

Option 1: starting BRAKER with existing hints file(s) before training

If you have access to an existing BRAKER output that contains hintsfiles that were generated from extrinsic data, such as RNA-
Seq or protein sequences, you can recycle these hints files in a new BRAKER run.

1a) RNA-Seq hints only (test1.sh):

Start a new job using the previously from-bam-generated hints with the following command (test1_restart1.sh, 115 minutes):

 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --softmasking --workingdir=${BRAKER_NEW}

1b) Protein hints from a run in --epmode (test2.sh)

Start a new job using the previously from-prothint-generated hints with the following command (test2_restart1.sh, 84 minutes):

 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --prothints=${BRAKER_OLD}/prothints.gff \
 --evidence=${BRAKER_OLD}/evidence.gff \
 --softmasking --epmode --workingdir=${BRAKER_NEW}

1c) Protein and RNA-Seq hints from a run in --etpmode (test3.sh)

Start a new job using the previously from-prothint-generated hints and bam-generated hints with the following command
(test3_restart1.sh, 340 minutes):

 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --genemark_hintsfile=${BRAKER_OLD}/genemark_hintsfile.gff \
 --evidence=${BRAKER_OLD}/evidence.gff \
 --softmasking --etpmode --workingdir=${BRAKER_NEW}

1d) Proteins of close homology, generating training genes with GenomeThreader (test4.sh):

Currently no option to restart after training gene generation.

1e) Proteins of close homology & training from RNA-Seq data with GeneMark-ET (test5.sh)

Start a new job using the previously from-bam-generated hints and from alignment of proteins of close homology to genome
generated hints with the following command (stest5_restart1.sh, 270 minutes):

 braker.pl --genome=../genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --softmasking --workingdir=${BRAKER_NEW}

1f) Proteins of close homology -- also in training genes -- & training from RNA-Seq data with GeneMark-ET (test6.sh)

Currently no option to restart after training gene generation.

1g) AUGUSTUS prediction only with RNA-Seq data (test7.sh)

Start a new AUGUSTUS prediction-only job using the previously from-bam-generated hints with the following command
(test7_restart1.sh, 60 minutes):

 braker.pl --genome=../genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --species=fly --skipAllTraining --softmasking \
 --workingdir=${BRAKER_NEW}

1h) No hints involved with --esmode (test8.sh)

Cannot be restarted after hints generation (no hints generated).

Option 2: starting BRAKER after GeneMark-EX had finished, before
training AUGUSTUS

2a) RNA-Seq hints only (test1.sh):

Start a new job using the previously generating GeneMark-ET file with the following command (test1_restart2.sh, 120 minutes):

 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --geneMarkGtf=${BRAKER_OLD}/GeneMark-ET/genemark.gtf \
 --softmasking --workingdir=${BRAKER_NEW}

2b) Protein hints from a run in --epmode (test2.sh):

Start a new job using the previously generated GeneMark-EP file with the following command (test2_restart2.sh, 45 minutes):

 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --geneMarkGtf=${BRAKER_OLD}/GeneMark-EP/genemark.gtf \
 --softmasking --epmode --workingdir=${BRAKER_NEW}

2c) Protein and RNA-Seq hints from a run in --etpmode (test3.sh)

Start a new job using the previously generated GeneMark-ETP file with the following command (test3_restart2.sh, 212 minutes):

 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --geneMarkGtf=${BRAKER_OLD}/GeneMark-ETP \
 --softmasking --etpmode --workingdir=${BRAKER_NEW}

2d) Proteins of close homology, generating training genes with GenomeThreader (test4.sh):

Cannot be restarted after GeneMark-EX since that software did not run.

2e) Proteins of close homology & training from RNA-Seq data with GeneMark-ET (test5.sh)

Start a new job using the previously from-bam-generated hints and from alignment of proteins of close homology to genome
generated hints and the GeneMark-ET output file with the following command (test5_restart2.sh, 232 minutes):

 braker.pl --genome=../genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --geneMarkGtf=${BRAKER_OLD}/GeneMark-ET/genemark.gtf \
 --softmasking --workingdir=${BRAKER_NEW}

2f) Proteins of close homology -- also in training genes -- & training from RNA-Seq data with GeneMark-ET (test6.sh)

Currently no option to restart after training gene generation because no mechanism to pass the GenomeThreader training genes
to a new run.

2g) AUGUSTUS prediction only with RNA-Seq data (test7.sh)

Cannot be restarted after GeneMark-EX since that software did not run.

2h) No hints involved with --esmode (test8.sh)

Start a new job using the previously generated GeneMark-ES file with the following command (test8_restart2.sh, 376 minutes):

 braker.pl --genome=../genome.fa --esmode \
 --geneMarkGtf=${BRAKER_OLD}/GeneMark-ES/genemark.gtf \
 --softmasking --workingdir=${BRAKER_NEW}

Option 3: starting BRAKER after AUGUSTUS training

3a) RNA-Seq hints only (test1.sh):

Start a new job using parameters from RNA-Seq based AUGUSTUS training with the following command (test1_restart3.sh, 41
minutes):

 SPECIES=$(cat ${BRAKER_OLD}/braker.log | perl -ne \
 'if(m/AUGUSTUS parameter set with name ([^.]+)\./){print $1;}')
 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --skipAllTraining --species=${SPECIES} \
 --softmasking --workingdir=${BRAKER_NEW}

3b) Protein hints from a run in --epmode (test2.sh):

Start a new job using parameters from ProtHint/GeneMark-EP/EP+ based AUGUSTUS training with the following command
(test2_restart3.sh, 30 minutes):

 SPECIES=$(cat ${BRAKER_OLD}/braker.log | perl -ne \
 'if(m/AUGUSTUS parameter set with name ([^.]+)\./){print $1;}')
 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --skipAllTraining --species=${SPECIES}
 --softmasking --epmode --workingdir=${BRAKER_NEW}

3c) Protein and RNA-Seq hints from a run in --etpmode (test3.sh)

Start a new job using parameters from ProtHint and RNA-Seq based AUGUSTUS training using the following command
(test3_restart3.sh, 78 minutes):

 SPECIES=$(cat ${BRAKER_OLD}/braker.log | perl -ne \
 'if(m/AUGUSTUS parameter set with name ([^.]+)\./){print $1;}')
 braker.pl --genome=genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --skipAllTraining --species=${SPECIES} \
 --softmasking --etpmode --workingdir=${BRAKER_NEW}

3d) Proteins of close homology, generating training genes with GenomeThreader (test4.sh):

Start a new job using parameters from GenomeThreader protein based AUGUSTUS training using the following command
(test4_restart3.sh, 28 minutes):

 SPECIES=$(cat ${BRAKER_OLD}/braker.log | perl -ne \
 'if(m/AUGUSTUS parameter set with name ([^.]+)\./){print $1;}')
 braker.pl --genome=../genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --skipAllTraining --species=${SPECIES} --softmasking \
 --workingdir=${BRAKER_NEW} --prg=gth

3e) Proteins of close homology & training from RNA-Seq data with GeneMark-ET (test5.sh)

Start a new job using parameters from RNA-Seq based AUGUSTUS training and in addition GenomeThreader derived hints from
proteins of close homology with the following command (test5_restart3.sh, 86 minutes):

 SPECIES=$(cat ${BRAKER_OLD}/braker.log | perl -ne \
 'if(m/AUGUSTUS parameter set with name ([^.]+)\./){print $1;}')
 braker.pl --genome=../genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --skipAllTraining --softmasking --workingdir=${BRAKER_NEW} \
 --species=${SPECIES}

3f) Proteins of close homology -- also in training genes -- & training from RNA-Seq data with GeneMark-ET (test6.sh)

Start a new job using parameters from RNA-Seq & proteins of close homology (GenomeThreader) based AUGUSTUS training
with the following command (test6_restart3.sh, 85 minutes):

 SPECIES=$(cat ${BRAKER_OLD}/braker.log | perl -ne \
 'if(m/AUGUSTUS parameter set with name ([^.]+)\./){print $1;}')
 braker.pl --genome=../genome.fa --hints=${BRAKER_OLD}/hintsfile.gff \
 --prg=gth --skipAllTraining --softmasking \
 --workingdir=${BRAKER_NEW} --species=${SPECIES}

3g) AUGUSTUS prediction only with RNA-Seq data (test7.sh)

This is included in the original script test7.sh.

3h) No hints involved with --esmode (test8.sh)

Start a new job using parameters from GeneMark-ES based AUGUSTUS training with the following command (test8_restart3.sh,
20 minutes):

 SPECIES=$(cat ${BRAKER_OLD}/braker.log | perl -ne \
 'if(m/AUGUSTUS parameter set with name ([^.]+)\./){print $1;}')
 braker.pl --genome=../genome.fa --esmode --skipAllTraining \
 --softmasking --workingdir=${BRAKER_NEW} --species=${SPECIES}

Bug reporting
Before reporting bugs, please check that you are using the most recent versions of GeneMark-EX, AUGUSTUS and BRAKER.
Also, check the list of Common problems, and the Issue list on Github before reporting bugs. We do monitor open issues on
Github. Sometimes, we are unable to help you, immediatly, but we try hard to solve your problems.

Reporting bugs on github

If you found a bug, please open an issue at https://github.com/Gaius-Augustus/BRAKER/issues (or contact katharina.hoff@uni-
greifswald.de).

Information worth mentioning in your bug report:

Check in braker/yourSpecies/braker.log at which step braker.pl crashed.

There are a number of other files that might be of interest, depending on where in the pipeline the problem occured. Some of the
following files will not be present if they did not contain any errors.

 braker/yourSpecies/errors/bam2hints.*.stderr - will give details on a bam2hints crash (step for converting bam file to
intron gff file)

 braker/yourSpecies/hintsfile.gff - is this file empty? If yes, something went wrong during hints generation - does this
file contain hints from source “b2h” and of type “intron”? If not: GeneMark-ET will not be able to execute properly.

 braker/yourSpecies/startAlign.stderr - if you provided a protein fasta file and this file is not empty, something went
wrong during protein alignment

 braker/yourSpecies/startAlign.stdout - may give clues on at which point protein alignment went wrong

https://github.com/Gaius-Augustus/BRAKER/issues

 braker/yourSpecies/(align_gthalign_exoneratealign_spaln)/*err - errors reported by the alignment tools
gth/exonerate/spaln

 braker/yourSpecies/errors/GeneMark-ET.stderr - errors reported by GeneMark-ET

 braker/yourSpecies/errors/GeneMark-ET.stdout - may give clues about the point at which errors in GeneMark-ET
occured

 braker/yourSpecies/GeneMark-ET/genemark.gtf - is this file empty? If yes, something went wrong during executing
GeneMark-ET

 braker/yourSpecies/GeneMark-ET/genemark.f.good.gtf - is this file empty? If yes, something went wrong during filtering
GeneMark-ET genes for training AUGUSTUS

 braker/yourSpecies/genbank.good.gb - try a “grep -c LOCUS genbank.good.gb” to determine the number of training
genes for training AUGUSTUS, should not be low

 braker/yourSpecies/errors/firstetraining.stderr - contains errors from first iteration of training AUGUSTUS

 braker/yourSpecies/errors/secondetraining.stderr - contains errors from second iteration of training AUGUSTUS

 braker/yourSpecies/errors/optimize_augustus.stderr - contains errors optimize_augustus.pl (additional training set for
AUGUSTUS)

 braker/yourSpecies/errors/augustus*.stderr - contain AUGUSTUS execution errors

Common problems

BRAKER complains that the RNA-Seq file does not correspond to the provided genome file, but I am sure the files
correspond to each other!

Please check the headers of the genome FASTA file. If the headers are long and contain whitespaces, some RNA-Seq
alignment tools will truncate sequence names in the BAM file. This leads to an error with BRAKER. Solution: shorten/simplify
FASTA headers in the genome file before running the RNA-Seq alignment and BRAKER.

There are duplicate Loci in the train.gb file (after using GenomeThreader)!

This issue arises if outdated versions of AUGUSTUS and BRAKER are used. Solution: Please update AUGUSTUS and
BRAKER from github (https://github.com/Gaius-Augustus/Augustus, https://github.com/Gaius-Augustus/BRAKER).

GeneMark fails!

(a) GeneMark requires a valid hidden key file in your home directory (~/.gm_key). The fiel expires after 200 days. Please
check whether you have a valid key file before reporting an issue about this. Also, BRAKER may issue a WARNING that
GeneMark is likely going to file due to limited extrinsic evidence. If you see that warning, please don't open an issue but try a
different approach towards annotating your genome. For example, you can add more evidence data, you can try the protein
mapping pipeline approach, you can try running --esmode without extrinsic evidence, …

(b) GeneMark by default only uses contigs longer than 50k for training. If you have a highly fragmented assembly, this might
lead to "no data" for training. You can override the default minimal length by setting the BRAKER argument --
min_contig=10000 .

(c) see "[something] failed to execute" below.

[something] failed to execute!

https://github.com/Gaius-Augustus/Augustus
https://github.com/Gaius-Augustus/BRAKER

When providing paths to software to BRAKER, please use absolute, non-abbreviated paths. For example, BRAKER might
have problems with --SAMTOOLS_PATH=./samtools/ or --SAMTOOLS_PATH=~/samtools/ . Please use
 SAMTOOLS_PATH=/full/absolute/path/to/samtools/ , instead. This applies to all path specifications as command line
options to braker.pl . Relative paths and absolute paths will not pose problems if you export a bash variable, instead, or if
you append the location of tools to your $PATH variable.

BRAKER cannot find the Augustus script XYZ…

Update Augustus from github with git clone https://github.com/Gaius-Augustus/Augustus.git . Do not use Augustus
from other sources. BRAKER is highly dependent on an up-to-date Augustus. Augustus releases happen rather rarely,
updates to the Augustus scripts folder occur rather frequently.

Does BRAKER depend on Python3?

Partially. The options --make_hub and --UTR will require Python3. The general required for Python3 for generating e.g. the
protein sequence output file can be disabled with --skipGetAnnoFromFasta . So, if you use BRAKER with --
skipGetAnnoFromFasta and not with --make_hub and --UTR , BRAKER does not require Python3. The python scripts
employed by BRAKER are not compatible with Python2.

Why does BRAKER predict more genes than I expected?

If transposable elements (or similar) have not been masked appropriately, AUGUSTUS tends to predict those elements as
protein coding genes. This can lead to a huge number genes. You can check whether this is the case for your project by
BLASTing (or DIAMONDing) the predicted protein sequences against themselves (all vs. all) and counting how many of the
proteins have a high number of high quality matches. You can use the output of this analysis to divide your gene set into two
groups: the protein coding genes that you want to find and the repetitive elements that were additionally predicted.

I am running BRAKER in Anaconda and something fails…

Update AUGUSTUS and BRAKER from github with git clone https://github.com/Gaius-Augustus/Augustus.git and
 git clone https://github.com/Gaius-Augustus/BRAKER.git . The Anaconda installation is great, but it relies on releases
of AUGUSTUS and BRAKER - which are often lagging behind. Please use the current github code, instead.

Citing BRAKER and software called by BRAKER
Since BRAKER is a pipeline that calls several Bioinformatics tools, publication of results obtained by BRAKER requires that not
only BRAKER is cited, but also the tools that are called by BRAKER. BRAKER will output a file what-to-cite.txt in the
BRAKER working directory, informing you about which exact sources apply to your run.

Always cite:

Hoff, K.J., Lomsadze, A., Borodovsky, M. and Stanke, M. (2019). Whole-Genome Annotation with BRAKER. Methods
Mol Biol. 1962:65-95, doi: 10.1007/978-1-4939-9173-0_5.

Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M. and Stanke, M. (2016). BRAKER1: unsupervised RNA-Seq-based
genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics, 32(5):767-769.

Stanke, M., Diekhans, M., Baertsch, R. and Haussler, D. (2008). Using native and syntenically mapped cDNA
alignments to improve de novo gene finding. Bioinformatics, doi: 10.1093/bioinformatics/btn013.

Stanke. M., Schöffmann, O., Morgenstern, B. and Waack, S. (2006). Gene prediction in eukaryotes with a generalized
hidden Markov model that uses hints from external sources. BMC Bioinformatics 7, 62.

If any kind of AUGUSTUS training was performed by BRAKER, check carefully whether you configured BRAKER to use
NCBI BLAST or DIAMOND. One of them was used to filter out redundant training gene structures.

If you used NCBI BLAST, please cite:

Altschul, A.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). A basic local alignment search tool. J Mol
Biol 215:403--410.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). Blast+:
architecture and applications. BMC bioinformatics, 10(1):421.

If you used DIAMOND, please cite:

Buchfink, B., Xie, C., Huson, D.H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods
12:59-60.

If BRAKER was executed with a genome file and no extrinsic evidence, cite, then GeneMark-ES was used, cite:

Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O. and Borodovsky, M. (2005). Gene identification in novel eukaryotic
genomes by self-training algorithm. Nucleic Acids Research, 33(20):6494--6506.

Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O. and Borodovsky, M. (2008). Gene prediction in novel fungal
genomes using an ab initio algorithm with unsupervised training. Genome research, pages gr--081612, 2008.

If BRAKER was run with proteins of unknown phylogenetic distance (--epmode or --etpmode), please cite all tools that are
used by the ProtHint pipeline to generate hints:

Bruna, T., Lomsadze, A., Borodovsky, M. (2020) GeneMark-EP and -EP+: automatic eukaryotic gene prediction
supported by spliced aligned proteins. Preprint on bioarXive at doi: <https://doi.org/10.1101/2019.12.31.891218 >.

Buchfink, B., Xie, C., Huson, D.H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59-
60.

Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O. and Borodovsky, M. (2005). Gene identification in novel eukaryotic
genomes by self-training algorithm. Nucleic Acids Research, 33(20):6494--6506.

Iwata, H., and Gotoh, O. (2012). Benchmarking spliced alignment programs including Spaln2, an extended version of
Spaln that incorporates additional species-specific features. Nucleic acids research, 40(20), e161-e161.

Gotoh, O., Morita, M., Nelson, D. R. (2014). Assessment and refinement of eukaryotic gene structure prediction with
gene-structure-aware multiple protein sequence alignment. BMC bioinformatics, 15(1), 189.

If BRAKER was executed with RNA-Seq alignments in bam-format, then SAMtools was used, cite:

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.; 1000 Genome
Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics,
25(16):2078-9.

Barnett, D.W., Garrison, E.K., Quinlan, A.R., Strömberg, M.P. and Marth G.T. (2011). BamTools: a C++ API and toolkit
for analyzing and managing BAM files. Bioinformatics, 27(12):1691-2

If BRAKER was executed with proteins of closely related species, cite GenomeThreader:

Gremme, G. (2013). Computational Gene Structure Prediction. PhD thesis, Universität Hamburg.

If BRAKER called MakeHub for creating a track data hub for visualization of BRAKER results with the UCSC Genome
Browser, cite:

Hoff, K.J. (2019) MakeHub: Fully automated generation of UCSC Genome Browser Assembly Hubs. Genomics,
Proteomics and Bioinformatics, in press 2020, preprint on bioarXive, doi: https://doi.org/10.1101/550145.

https://doi.org/10.1101/2019.12.31.891218
https://doi.org/10.1101/550145

License
All source code, i.e. scripts/*.pl or scripts/*.py are under the Artistic License (see
http://www.opensource.org/licenses/artistic-license.php).

Footnotes

[F1] EX = ES/ET/EP/ETP, all available for download under the name GeneMark-ES/ET/EP ↩

[F2] Please use the latest version of AUGUSTUS distributed by the original developers, it is available from github at
https://github.com/Gaius-Augustus/Augustus. Problems have been reported from users that tried to run BRAKER with
AUGUSTUS releases maintained by third parties, i.e. Bioconda. ↩

[F3] Not tested in this release, we recommend using GenomeThreader, instead ↩

[F4] install with sudo apt-get install cpanminus ↩

[F5] GeneMark-EX is not a mandatory tool if AUGUSTUS is to be trained from GenomeThreader aligments with the option --
trainFromGth . ↩

[F6] The binary may e.g. reside in bamtools/build/src/toolkit ↩

References

[R1] Hoff, Katharina J, Simone Lange, Alexandre Lomsadze, Mark Borodovsky, and Mario Stanke. 2015. “BRAKER1:
Unsupervised Rna-Seq-Based Genome Annotation with Genemark-et and Augustus.” Bioinformatics 32 (5). Oxford University
Press: 767--69.↩

[R2] Lomsadze, Alexandre, Paul D Burns, and Mark Borodovsky. 2014. “Integration of Mapped Rna-Seq Reads into Automatic
Training of Eukaryotic Gene Finding Algorithm.” Nucleic Acids Research 42 (15). Oxford University Press: e119--e119.↩

[R3] Stanke, Mario, Mark Diekhans, Robert Baertsch, and David Haussler. 2008. “Using Native and Syntenically Mapped cDNA
Alignments to Improve de Novo Gene Finding.” Bioinformatics 24 (5). Oxford University Press: 637--44.↩

[R4] Stanke, Mario, Oliver Schöffmann, Burkhard Morgenstern, and Stephan Waack. 2006. “Gene Prediction in Eukaryotes with
a Generalized Hidden Markov Model That Uses Hints from External Sources.” BMC Bioinformatics 7 (1). BioMed Central: 62.↩

[R5] Barnett, Derek W, Erik K Garrison, Aaron R Quinlan, Michael P Strömberg, and Gabor T Marth. 2011. “BamTools: A C++
Api and Toolkit for Analyzing and Managing Bam Files.” Bioinformatics 27 (12). Oxford University Press: 1691--2.↩

[R6] Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, and Richard
Durbin. 2009. “The Sequence Alignment/Map Format and Samtools.” Bioinformatics 25 (16).
Oxford University Press: 2078--9.↩

[R7] Gremme, G. 2013. “Computational Gene Structure Prediction.” PhD thesis, Universität Hamburg.↩

[R8] Gotoh, Osamu. 2008a. “A Space-Efficient and Accurate Method for Mapping and Aligning cDNA Sequences onto Genomic
Sequence.” Nucleic Acids Research 36 (8). Oxford University Press: 2630--8.↩

[R9] Iwata, Hiroaki, and Osamu Gotoh. 2012. “Benchmarking Spliced Alignment Programs Including Spaln2, an Extended
Version of Spaln That Incorporates Additional Species-Specific Features.” Nucleic Acids Research 40 (20). Oxford University
Press: e161--e161.↩

http://www.opensource.org/licenses/artistic-license.php
https://github.com/Gaius-Augustus/Augustus

[R10] Osamu Gotoh. 2008b. “Direct Mapping and Alignment of Protein Sequences onto Genomic Sequence.” Bioinformatics 24
(21). Oxford University Press: 2438--44.↩

[R11] Slater, Guy St C, and Ewan Birney. 2005. “Automated Generation of Heuristics for Biological Sequence Comparison.” BMC
Bioinformatics 6(1). BioMed Central: 31.↩

[R12] Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. “Basic Local Alignment Search Tool.” Journal of
Molecular Biology 215:403--10.↩

[R13] Camacho, Christiam, et al. 2009. “BLAST+: architecture and applications.“
BMC Bioinformatics 1(1): 421.↩

[R14] Lomsadze, A., V. Ter-Hovhannisyan, Y.O. Chernoff, and M. Borodovsky. 2005. “Gene identification in novel eukaryotic
genomes by self-training algorithm.” Nucleic Acids Research 33 (20): 6494--6506. doi:10.1093/nar/gki937.↩

[R15] Ter-Hovhannisyan, Vardges, Alexandre Lomsadze, Yury O Chernoff, and Mark Borodovsky. 2008. “Gene Prediction in
Novel Fungal Genomes Using an Ab Initio Algorithm with Unsupervised Training.” Genome Research. Cold Spring Harbor Lab,
gr--081612.↩

[R16] Hoff, K.J. 2019. MakeHub: Fully automated generation of UCSC Genome Browser Assembly Hubs. Genomics, Proteomics
and Bioinformatics, in press, preprint on bioarXive, doi: https://doi.org/10.1101/550145.↩

[R17] Bruna, T., Lomsadze, A., and Borodovsky, M. 2020. Bruna, Tomas, Alexandre Lomsadze, and Mark Borodovsky.
GeneMark-EP and-EP+: automatic eukaryotic gene prediction supported by spliced aligned proteins. preprint on bioarXive, doi:
<https://doi.org/10.1101/2019.12.31.891218 5>.↩

[R18] Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., and Zdobnov, E. M. 2019. OrthoDB
v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional
annotations of orthologs. Nucleic Acids Research, 47(D1), D807-D811.↩

https://doi.org/10.1093/nar/gki937
https://doi.org/10.1101/550145
https://doi.org/10.1101/2019.12.31.891218

